

Gianluca

Dalle operazioni numeriche alla logica

Dalla logica : circuiti elettrici

Reti logiche

prof. Gianluca Amato

Modulo di "Logica" Insegnamento di "Fondamenti di Informatica" Corso di Laurea in Economia e Informatica per l'Impresa a.a. 2023/24

20 novembre 2023

Logica e progettazione di calcolatori

Gianluca Amato

Dalle operazioni numeriche all logica

Dalla logica a circuiti elettrici Questa lezione è un po' una digressione rispetto all'argomento principale del corso, ma ritengo interessante vedere come i concetti della logica si utilizzano in ambiti applicativi completamente diversi.

Vedremo come le CPU in buona parte implementano delle enormi formule logiche in cui però "vero" e "falso" sono rimpiazzati da presenza e assenza di corrente.

Contenuti

Reti logiche

Gianluca Amato

Dalle operazioni numeriche alla logica

Dalla logica a circuiti elettrici 1 Dalle operazioni numeriche alla logica

2 Dalla logica ai circuiti elettrici

Sommare tre cifre binarie (1)

Reti log

Gianluca Amato

Dalle operazioni numeriche all logica

Dalla logica a circuiti elettrici Tra le operazioni che la CPU deve fare, una ovviamente è la somma di numeri.

Supponiamo di dover costruire un circuito che esegue la somma di tre cifre binarie. L'output sarà numero di due bit. Questo circuito prende il nome di sommatore completo.

Questa tabella mostra l'output prodotto dal circuito per ogni possibile input:

а	b	С	a+b+c
0	0	0	00 (0)
0	0	1	01 (1)
0	1	0	01 (1)
0	1	1	10 (2)
1	0	0	01 (1)
1	0	1	10 (2)
1	1	0	10 (2)
1	1	ù 1	11 (3)

Sommare tre cifre binarie (2)

Gianluca

Dalle operazioni numeriche alla logica

Dalla logica : circuiti elettrici

а	Ь	C	a+b+c	a	b	С	r	S	<i>A</i>	B	C	R	S	
0	0	0	00 (0)	0	0	0	0	0	F	F	F	F	F	
0	0	1	01 (1)	0	0	1	0	1	F	F	V	F	V	
0	1	0	01 (1)	0	1	0	0	1	F	V	F	F	V	
0	1	1	10 (2)	0	1	1	1	0	F	V	V	V	F	
1	0	0	01 (1)	1	0	0	0	1	V	F	F	F	V	
1	0	1	10 (2)	1	0	1	1	0	V	F	V	V	F	
1	1	0	10 (2)	1	1	0	1	0	V	V	F	V	F	
1	1	1	11 (3)	1	1	1	1	1	V	V	V	V	V	

Partendo da questa tabella:

- Separiamo le due cifre binarie dell'output in due colonne
- Rimiazziamo 0 ed 1 con V ed F

Ottieniamo una tabella di verità per due funzioni proposizionali R e S

Formule logiche del sommatore

Gianluca Amato

Dalle operazioni numeriche all logica

circuiti elettrici Usando tecniche già viste, possiamo ricavare le forme proposizionali per le colonne R ed S, che sono:

$$R = (\neg A \land B \land C) \lor (A \land \neg B \land C) \lor (A \land B \land \neg C) \lor (A \land B \land C)$$

$$\equiv (B \land C) \lor (A \land (B \lor C))$$

■
$$S = (\neg A \land B \land \neg C) \lor (A \land \neg B \land C) \lor (A \land \neg B \land C) \lor (A \land B \land C)$$

≡ $A \lor B \lor C$

Per curiosità, si noti che una disgiunzione esclusiva tra più lettere proposizionali, come $A \subseteq B \subseteq C$, è vera quando il numero di lettere che hanno valore di verità vero è dispari.

Abbiamo quindi due formle logiche che "implementano" le operazioni di somma di tre numeri a un bit.

Dalla somma di bit alla somma di numeri $\left(1 ight)$

Reti logici

Amato

Dalle

Dalla logica a circuiti elettrici Possiamo schematizzare il sommatore completo in questo modo:

- A, B, e C_{in} sono i bit da sommare;
- **S** e C_{out} sono il risultato. In particolare:
 - *S* è il bit meno significativo del risultato;
 - C_{out} è il bit più significativo del risultato, chiamato *riporto* (o *carry* in inglese).

Immagine © en:User:Cburnett - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=1477628

Dalla somma di bit alla somma di numeri (2)

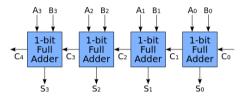
Gianluca Amato

Dalle operazioni numeriche all logica

circuiti elettrici Come si sommano due numeri in colonna (in base 2 o 10 che sia) ?

- Si sommano prima le unità. Siccome la somma può dare come risultato un numero con due cifre, si scrive la cifra delle unità e si tiene da parte la cifra delle decine (che si chiama riporto).
- Si passa quindi alle cifra a sinistra: queste si sommano tra di loro e assieme al riporto generato al passo prima. Il risultato di questa somma è anch'esso costituito da una cifra di risultato ed una di riporto.
- E così via per le cifre ancora più significative.

Seguendo questo principio, se dobbiamo sommare due numeri composti da vari bit, possiamo collegare in cascata vari circuiti addizionatori.


Dalla somma di bit alla somma di numeri (3)

Gianluca

Amato

Dalle
operazioni

Dalla logica a circuiti elettrici Ad esempio, se abbiamo due numeri di 4 cifre $(A_3A_2A_1A_0 e B_3B_2B_1B_0)$ un circuito che li somma si può ottenere come segue:

Il risultato è costituito da $S_3S_2S_1S_0$ con il riporto C_4 . L'input C_0 è il riporto da una eventuale addizione precedente, che può essere posto a 0 / falso se non c'è nessun riporto da considerare.

Contenuti

Reti logiche

Amato

operazioni numeriche all logica

Dalla logica ai circuiti elettrici 1 Dalle operazioni numeriche alla logica

2 Dalla logica ai circuiti elettrici

Interruttori elettronici

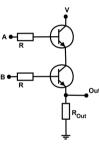
Gianluca Amato Dalle

Dalla logica ai circuiti elettrici Per ora questi circuiti sono comunque oggeti puramente logico/matematici. Come si fa a costruire un circuito che implementa effettivamente una formula logica?

- si associa un livello di tensione ai due valori di verità: ad esempio, 0 Volt per il valore falso e 5 Volt per il valore vero;
- si utilizzano degli interruttori elettronici, ovvero degli interruttori concettualmente simili a quelli che usiamo per accendere la luce, ma che si possono aprire e chiudere tramite un segnale elettrico.

La tecnologia degli interrutori elettronici è cambiata nel tempo:

- relè
- valvole termoioniche
- diodi
- transistor


Il connettivo AND

Gianluca Amato

Dalle operazioni numeriche all logica

Dalla logica ai circuiti elettrici Ecco come realizzare il connettivo AND con una coppia di transistor:

Transistor AND Gate

- se A e B sono entrambi veri, i due transistor fanno passare la corrente, e nel punto Out si misura la tensione V (+5 V);
- appena uno solo tra A o B è falso (0 V), il transistor scollega il circuito, e nel punto Out si misura 0 V.

Dalla logica ai circuiti elettrici I pezzi che compongono il circuito di sopra si possono acquistare uno per uno. Ma ovviamente così anche un semplice sommatore diventa gigantesco.

Col tempo, si è imparato a costruire *circuiti integrati* che contengono miliardi di transistor. Questa tecnologia prende il nome di VLSI (Very Large Scale Integration).

Ad esempio:

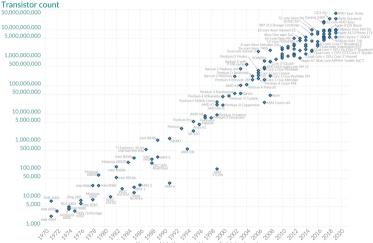
- la CPU Apple M2 che si trova sui nuovo Mac ha circa 20 miliardi di transistor;
- la GPU nVidia GTX 3090 ha circa 28.3 miliardi di transistor.

Empiricamente, si è visto che il numero di transistor che si riesce a inserire in un unico circuito integrato raddoppia ogni due anni. Questa evidenza empirica è nota come legge di Moore.

Sembra però che la legge di Moore stia per arrivare al suo limite.

La legge di Moore

Gianluca Amato


numeriche alla

Dalla logica ai circuiti elettrici

Moore's Law: The number of transistors on microchips doubles every two years Our World

Data source: Wikipedia (wikipedia.org/wiki/Transistor count) OurWorldinData.org – Research and data to make progress against the world's largest problems.

in Data