Gianluca Amato

Universita di Chieti-Pescara

- Z= CYBER
Software Security 02 & CUALLENGET
CYBERSECURITY
Dal sorgente al codice eseguibile (e ritorno) \ NATIONAL

“ani: " [ABORATORY

https://cybersecnatlab.it

License & Disclaimer
I

License Information Dlsclalmer

This presentation is licensed under the We disclaim any warranties or representations
Creative Commons BY-NC License as to the accuracy or completeness of this
material.

> Materials are provided “as is” without
warranty of any kind, either express or
implied, including without limitation,
warranties of merchantability, fitness for a
particular purpose, and non-infringement.

> Under no circumstances shall we be liable for
any loss, damage, liability or expense incurred
http://creativecommons.org/licenses/by-nc/3.0/legalcode or suffered which is claimed to have resulted
from use of this material.

To view a copy of the license, visit:

GYBER 407y
* CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025 v

CPU e memoria

I T

Per queste lezioni di software security, le parti di un computer su cui
focalizzeremo I'attenzione sono:

— la CPU (Central Processing Unity);
— la memoria centrale (talvolta chiamata RAM).
e Sulla CPU diremo di piu nelle prossime lezioni.

Prima di iniziare la vera lezione, diciamo due parole sulla memoria centrale.
— Ciinteressa come un programma vede la memoria centrale.

— Inrealta le cose sono piu complesse, ma questa complessita e gestita dal sistema
operativo.

CYBER
= CHALLENGEIT

18

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

La memoria centrale
T

e La memoria centrale € una sequenza

byte
di celle: - . . cella
— Ogni cella ha un indirizzo ’[1}
— Ogni cella contiene un byte 2
« numero binario di 8 bit E 2
e ovvero numeroda0 a 255 _E 15 :
 Le istruzioni della CPU consentono di -= . .
accedere a qualunque cella di ° .
memoria, partendo dall’'indirizzo. L@ ¢

CYBER
= CHALLENGEIT

18

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Numerazione in base 16
e

Spesso (sempre) scriveremo i numeri in base 16 (esadecimale)

Viricordo che i numeri in base 16 si scrivono con le cifreda0a 9 e le lettere da A
(10) ad F (15).

Un byte in base 16 contiene un numero da 0 ad FF (255)

Su due byte possiamo mettere un numero da 0 ad FFFF (65535)
- ...ecosivia

Se incontriamo un numero, come facciamo a capire se € in base 10 o in base 167?
— Se contiene lettere, € in base 16 (1D5)

Talvolta useremo il prefisso Ox o il suffisso h per i numeri in base 16 (0x154)
Se il numero ha degli O iniziali, € in base 16 (0154)

« A meno che non usi solo le cifre 0 ed 1, al ché potrebbe essere in base 2

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

PARTE 1
N
Dal sorgente all’eseguibile

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 30.04.2025

Il linguaggio macchina
N

« |l computer capisce un solo linguaggio: il linguaggio macchina (d’ora in poi LM)
o Vantaggi

— e possibile sfruttare tutte le potenzialita dell’hardware.
o Svantaggi

- estremamente complesso;

— ogni istruzione & una sequenza di byte (difficile da ricordare);
— cambia completamente da un famiglia di CPU all’altra
e Intel/AMD a 64 bit
o ARM (CPU usata per gli smartphone o i nuovi Mac)
— il programma € strettamente legato al sistema operativo per cui € scritto:

e un programma in LM per Linux non funziona su Windows o Mac, neanche se la CPU ¢ la
stessa.

CYBER
= CHALLENGEIT

18

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Un programma in LM
I

e Questo programma visualizza la scritta “Hello, world!” sullo schermo e
poi termina

e Funziona su PC con Linux e CPU Intel/AMD a 64 bit

48 c7 cO 01 00 00 00 48 c7 c7 01 00 00 00 48@(— byte scritto in base 16
c6 00 00 00 00 48 c7 c2 0f 00 00 00 Of 05 48 c7

cO 3c 00 00 00 48 c7 c7 00 00 00 00 Of 05 48 65

6c 6¢c 6f 2c 20 77 6f 72 6¢c 64 21 0a

GYBER Ty
= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Il linguaggio assembly

B TR
.text . . .
.global _start e || LM non é fatto per gli umani e
_start.: M M
mov $1, Yrax nessuno (oggi) lo usa direttamente.
mov $1, Jrdi e In qualche occasione si usa il linguaggio
mov $msg, %rsi
mov $len, %rdx assembIY-
Byacal L — Ogni istruzione corrisponde a una
mov $60, Yrax . . .
e B0, o Istruzione in LM.
syscall — Piu facile da ricordare rispetto al LM.
.data
msg:
.string "Hello, world!\n"
msgend:
.equ len, msgend - msg
£= CYBER
=7 CHALLENGEIT &

. S
© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025 ‘ /

Assembly e linguaggio macchina
o |

1 .text

2 .global _start

3 _start:

4 0000 [4BC7C0O0T| |mov $1, Yrax [¢—

4 000000 istruzione in assembly
5 0007 48C7C701

5 000000

6 D00e 48C7C600 mov $msg, Yrsi

6 000000 istruzione in lingiaggio macchina
7 0015 48C7C20F mov $len, Yrdx

7 000000

8 001c OF05 syscall

8

9 001e 48C7C0O3C mov $60, Yrax

9 000000
10 0025 48C7C700 mov $0, Jrdi
10 000000
11 002c OFO05 syscall
12 .data
13 msg:
14 0000 48656C6C .string "Hello, world!\n"
14 BF2C2077
14 BF726C64
14 210A00

YBER *
HALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Dal linguaggio assembly al linguaggio macchina

[] [J
<

programma programma
programimd assemblatore s .
i > in linguaggio
in assembly ,
(assembler) macchina

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Linguaggi ad alto livello
e P

e Siail LM che 'assembly sono linguaggi a basso livello.

« Normalmente si programma con linguaggi ad alto livello (C, Python, Java, ...):
— piu semplici da comprendere per un essere umano;
— non dipendono dalla CPU utilizzata;
— non dipendono (almeno per le cose semplici) dal sistema operativo;
— non sono eseguibili direttamente dalla CPU.
« Come sifa a far eseguire un programma scritto in linguaggio ad alto livello?
— compilatore
— interprete
— soluzioni ibride

YBER

c w
= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025 /

Compilatore

e Legge il programma in linguaggio ad alto livello e lo traduce in
linguaggio macchina tutto in una volta. Una volta tradotto il

compilatore non serve piu

— Esempi di linguaggi tipicamente compilati: C, C++, Rust

programma programma
in linguaggio compilatore in linguaggio
ad alto livello macchina

>

codice sorgente

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

e

codice oggetto
codice macchina

codice binario

Rel. 30.04.2025

Compilazione del linguaggio C
I
e Cioccuperemo nelle prossime lezioni del linguaggio C

e Fasi della compilazione di un programma in
— preprocessing

— compilazione vera e propria

— assemblaggio (assembly)
— collegamento (linking)

e Nelle lezioni useremo il compilatore GCC (GNU Compiler Collection)
— disponibile per molti sistemi operativi

— lo standard per i sistemi Linux.

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Fase di preprocessing

s ¥

e Sioccupa di eseguire le direttive presenti nel codice sorgente, ovvero
le righe che iniziano con # come #include, #define, etc

o Sipuo dire al gcc di fermarsi alla fase di preprocessing con l'opzione -E

#include <stdio.h>

2 "hello.c" 2
cc -E hello.c
#definel MESSAGE "Hello world!" g

int main() <
printf (MESSAGE) ;

return 0;

5 "hello.c"
int main()—{
hello.c

printf ("Hello world!")

return 9;

I
CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

5

Fase di compilazione vera e propria

TR

e || codice dalla fase precedente € trasformato in istruzioni assembly.

e Sipuo dire al gcc di fermarsi alla fase di compilazione vera e propria
con l'opzione -S

#include <stdio.h>

gCC _S hello .C .cfi_startproc
#define MESSAGE "Hello world!" pushq %rbp
.cfi_def_cfa_offset 16
. . .cfi_offset 6, -16
int main() { movq %rsp, %rbp
printf (MESSAGE) ; .cfi_def_cfa_register 6
return 0; # 2 "hello.c" 2 mov1l $.LCO, %edi
} mov1l $0, %eax
call printf
movl $0, %eax
hello.c

5 "hello.c" popq %rbp

int main() { .cfi_def_cfa 7, 8
printf("Hello world!"); - -
return 0; ret

: hello.s

CYBER
= CHALLENGEIT

W
. &ﬁé
© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Fase di assemblaggio

e || codice assembly viene tradotto in LM

— ma in un formato che non € ancora pronto per essere eseguito.

e Sipuo dire al gcc di fermarsi alla fase di assemblaggio con l'opzione -c.

#include <stdio.h>

cc -c hello.c
#define MESSAGE "Hello world!" g

int main() {

printf(MESSAGE) ;
return 0;

us %rbp
\ .cfi_def_cfa_offset 16 hellO . O
int main ‘1 .cfi_offset 6, -16
rintf("Hello world!"); movq %rsp, %rbp
; .cfi_def_cfa_register 6
hello . C et movl $.LCO, %edi

movl $0, %eax
call printf
movl $0, %eax
popq %rbp
.cfi_def_cfa 7, 8
ret

-
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Il codice oggetto
T
Il file .o che si ottiene con gcc -c si chiama file oggetto.
— Per essere piu precisi, file oggetto non eseguibile.

e Contiene il programma in linguaggio macchina e informazioni di
supporto.

e E un file binario, ovvero contiene sequenze di byte che non sono
interpretabili come testo.

— Se si prova ad aprilo con un editor di testo come Visual Studio Code, si
ottiene spazzatura.

e Sipuo vederne il contenuto con un editor esadecimale.

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

18

Il codice oggetto visto da GHex
o |

e Filehello.o visto col programma GHex di Linux

— Vedremo in futuro programmi specifici per questo tipo di file

p0e0000 EF 45 4C 46 02 01 01 @0 00 20 @00 00 00 QO 00 00 DELF
00000010 @1 00 3E 00 @1 00 00 @0 00 90 00 00 00 00 00 00 S e e O
00000020 00 00 00 00 00 00 DO 0O 68 92 00 00 0@ @O 00 PO 0 h.o......
00000030 00 00 00 00 40 00 PO @O 00 90 4@ 00 OE 00 @D 00 N D @.....
00@0e040 55 48 89 ES BF 00 00 @0 00 B8 00 00 00 00 E8 00 N S e e B
00000050 00 00 00 B8 00 00 D0 @O 5D C3 48 65 6C 6C 6F 20 @] .Hello

PoeeRd6d 77 6F 72 6C 64 21 00 00 47 43 43 3A 20 28 47 4E world!..GCC: (GN
poeeRd70 55 29 20 31 34 2E 32 2E 31 20 32 30 32 35 30 31 U) 14.2.1 202501
00000080 31 30 20 28 52 65 64 20 48 61 74 20 31 34 2E 32 1@ (Red Hat 14.2
P0eeVA90 @ 2E 31 2D 37 29 00 00 @0 04 90 00 00 20 00 00 Q0 A-7) .. .
P0RO0OAD @5 00 0@ @@ 47 4E 55 00 02 90 @1 Co @4 00 00 Q0 SR 11 11

P00000BO 00 00 00 00 Q00 00 P0 @0 01 90 @1 CO @4 @@ @0 PO ...
000000CO | 01 00 00 00 Q0 00 00 @0 14 20 00 00 00 @@ @0 PO ... eeeaa

GYBER
* CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Fase di collegamento

e Codici oggetti multipli vengono combinati tra di loro e con le librerie di
sistema (.d11 in Windows

so in Linux) in un unico file eseguibile.
— Ad esempio, la funzione printf usata nel programma hello. c si trova
nella libreria C di Linux

gcc hello.o

hello.o a.out
(Nome convenzionale del file
eseguibile generato da gcc)
CYBER
£ CHALLENGE.IT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Collegamento statico e dinamico
I S
e Due approcci sono possibili per la fase di collegamento

ollegamento dinamico: il file eseguibile dipende da librerie dinamiche
(file oggetto condivisi) e funziona solo in loro presenza

o Il codice di printf non viene copiato nel file eseguibile
E la soluzione di default

— Collegamento statico: il file eseguibile generato € auto-contenuto e non
dipende da nessuna libreria esterna

« Il codice di printf viene copiato nel file eseguibile
Si puo attivare con l'opzione -static di gcc

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

18

Collegamento dinamico

$ gcc hello.c -o hello
5 1s -1 hello
-rwxr-xr-x. 1 amato amato 16616 13 apr 10.46 hello

£ ldd hello
linux-vdso.so.1 (OxEC
1.'I|:] .50.6 => ..-'

o || file e relativamente piccolo, solo 16.616 byte

e Il comando 1dd mostra le librerie dinamiche utilizzate:
—~ /1ib64/1d-1linux-x86-64.so: € il loader (vedi dopo)
— linux-vdso.so.1: accelera alcune chiamate al sistema operativo
- /1ib64/1libc.so.6: élalibreria C, e contiene il codice di printf

— | nomi di queste librerie possono cambiare da una versione di Linux ad un altra.
Quelli che trovate qui sono per Fedora Linux.

CYBER
= CHALLENGEIT

=

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Collegamento statico

23 F
5 gcc hello.c -static -o hello-static
5 1ls -1 hello-static

WX r=Xr—Xx

. 1 amato amato
5 ldd hello-static

.20 hello-static

not a dynamic

executable

e || file € molto piti grande !

— contiene una copia di varie funzioni della libreria C

e Per funzionare non ha bisogno che nel sistema sia presente alcuna
libreria:

— Il comando 1dd risponde che non si tratta di un eseguibile con
collegamento dinamico.

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

=

Il caricatore (loader)

24 N
. : :

La parte del sistema operativo che si occupa di caricare un programma
in memoria ed eseguirla.

o Per gli eseguibili statici:
— Molto semplice, carichi il file in memoria e via !
e Per gli eseguibili dinamici:
- Bisogna modificare il file eseguibile durante il caricamento:
 gliindirizzi delle funzioni provenienti dalla librerie dinamiche (come printf)
sono fittizi;

e vanno riempiti con gli indirizzi reali

— In Linux su Intel a 64bit il lavoro € svolto da un programma specifico
e /1ib64/1d-1inux-x86-64.s0.2

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

PARTE 2

sy
Il codice oggetto

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Il formato ELF
T
e In Linux il formato standard per i file oggetto € il formato ELF
— ELF: Executable and Linkable Format (https://wiki.osdev.org/ELF)
« Cisono tre tipi di file oggetto:

— rilocabili (relocatable): contengono codice e dati che possono essere

collegati con altri file rilocabili per creare nuovi file ELF (esempio, il file
hello.o)

— eseguibili (executable): contengono programmi pronti ad essere eseguiti
(esempio, i file hello ed hello-static)
e possono dipendere da librerie dinamiche oppure no

— condivisi (shared): come i rilocabili, ma possono svolgere il ruolo di
librerie dinamiche (esempio, il file /lib64/libc.so0.6)

CYBER
= CHALLENGEIT

UdA
© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

https://wiki.osdev.org/ELF

Struttura di un file ELF
oz ¥
e Un file ELF puo essere usato in due contesti
— esecuzione di un programma;

Linking view Execution view

ELF header ELF header
— collegamento con altro codice oggetto T —— ———
. . ot re table (optional) table
e Per svolgere questo doppio compito, il file ELF ——
puo essere visto contemporaneamente in due Segment |
modi distinti: e
. Segment 2
— come un insieme di sezioni;
— come un insieme di segment.
Section header Section header
table table {optional)
GYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Struttura di un file ELF

Il file ELF € diviso in sezioni

contiene informazioni sulla struttura del file ELF

— Manipolate dalla fase di collegamento

— Elenco presente nella “Section header table

e Le sezioni sono raggruppate in segmenti

— Manipolati dal caricatore (loader)

— Elenco presente nella “Program header table

— Solo per i file eseguibili.

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 30.04.2025

Linking view

2)

e Una intestazione iniziale (ELF header)

Execution view

ELF header ELF header
Program header Program header
table (optional) table

Section 1
Segment 1
Section n
Segment 2
Section header Section header
table table {optional)

Sezioni rilevanti di un file ELF
2 ¥
e .text: istruzioni del programma
e .data: dati inizializzati
e .bss: spazio usato dal programma per dati non inizializzati
e .rodata: simile a .data, ma per dati in sola lettura

symtab, .strtab: tabella dei simboli definiti nel programma

CYBER
= C

dynsym, .dynstr: tabella della funzioni da librerie dinamiche
dynamic, .rela.dyn, .rela.plt, .got, .got.plt: informazioni per il loader
HALLENGE.IT

© CINI - 2021, Gianluca Amato - 2025

Rel. 30.04.2025

18

Analizzare il contenuto del file ELF

o ¥
e Strumenti su riga di comando per analizzare un file ELF:

— strings
— objdump
— readelf

— nm

e Strumenti grafici per analizzare un file ELF:
— Cutter (https://github.com/rizinorg/cutter)

— Elfparser-ng (https://github.com/mentebinaria/elfparser-ng)

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

https://github.com/rizinorg/cutter
https://github.com/mentebinaria/elfparser-ng

strings

s

e Semplice strumento per
visualizzare tutte le stringhe

& strings hello

presenti in un file s

JLibsd/1d-Tinux-x86-64.50.2

. . . __libc_start_main
e strings visualizza printf
libc.s0.6
. . ope GLIBC_2.2.5
— sequenze di caratteri stampabili GLIBC 2.34

gmon_start

— lunghe almeno 4 caratteri Hello world:
- Seguite da Caratteri non Stampablll .un. 14.2.1 20250110 (Red Hat 14.2.1-7)

e Le stringhe potrebbero contenere
valori segreti.

CYBER
= CHALLENGEIT

15

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

strings

Alcune opzioni di strings
I .,
« —d (o -—-data): visualizza solo le stringhe presenti nella sezioni dati di
un file ELF

e -n <num> (0 --bytes=<num>): visualizza sequenze di caratteri
stampabili lunghe almeno <num> (il default & 4)

-e <encoding> o (--encoding=<encoding>): imposta la codifica
utilizzata per le stringhe.

— per default, solo i caratteri ASCII standard (codici 0-127) vengono
considerati stampabili;

— per stringhe che contengono anche caratteri accentati, usare —eS.

CYBER
= CHALLENGEIT

UdA
© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Ambiente per I'esecuzione di codice a 32bit
.
e Alcune challenge sono per CPU Intel a 32bit
— La vostra CPU ¢ sicuramente a 64bit
— Puo eseguire anche codice a 32bit, ma € necessario installare dei
pacchetti addizionali

e Su distribuzioni Debian e derivate (Ubuntu, Kali, etc...), installare il
pacchetto 1ibc6-1386 con il comando
— apt install 1ibc6-1386

CYBER
= C

HALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 30.04.2025

Esercizi
B

Svolgere la challenge

SS 01 — The safe

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 30.04.2025

https://ctf.cyberchallenge.it/challenges#challenge-97

readelf Visualizzare l'intestazione (-h / --file-header)

° Type ;L::H;d:;j,_h hello
— EXEC (eseguibile)
— REL (rilocabile) e
ABI Version:

— DYN (condiviso) Type:

Machine:

Ac 46 B2 A1 A1 OO A6 OB OO OO AF

Version:

¢ Ma‘Chlne Entry point address:

Start of program headers:

—_ Tipo CPU Start of section headers:

Flags:

- 32 / 64 bit Size of this header:

Size of program headers:

Number of program he
S5ize of section headers:

Number of section headers:
Section header string table index: 3

5

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

readelf Visualizzare le sezioni (-S / --sections)

Section Headers:
-W per formato [Nr] Name Type Addr i ! g Lk Inf Al
I S @] NULL 0 A6 4 A 0
Iargo pid Iegglblle 1] .note.gnu.property NOTE : 8 &
- 2] .note.gnu.build-id NOTE
e.ABI-tag NOTE
PROGBITS
PROGEBITS

FROGBITS
FROGEITS
FROGBITS

« Name: nome della sezione

. Type: tipo della sezione (NULL: sezione vuota, PROGBITS: programmi e dati, etc...)

o Address: indirizzo in memoria dove viene caricata la sezione (per i file eseguibili)

. O0ff:indirizzo della sezione a partire dall’inizio del file (offset)

« Size:dimensione della sezione

. Flags: informazioni sulla sezione (A: occupa spazio in memoria, W: & scrivibile, X: contiene istruzioni, etc...)

5

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

readelf Visualizzare la tabella dei simboli (-s / --symbols)

% readelf -W --syms hello

Symbol table '.dynsym' contains 4 entries:
Bind Vis Ndx Name
LOCAL DEFAULT

@ FUNC GLOBAL DEFAULT UND __libc_start_main@GLIBC_2.3¢
@ FUNC GLOBAL DEFAULT UR pr intfRGLIBC_2.2.5 (3)
@ NOTYPE WEAK DEFAULT UM __jmnn_f+1r+__

Symbol table '.symtab' contains 34 entries:
Mum: Size Type Bind Vis Ndx Mame
@ @ @ NOTYPE LOCAL DEFAULT UND
1l: @ B FILE LOCAL DEFAULT ABS crtl.o
o Sitratta del contenuto delle sezioni
— .dynsym: simboli usati per il caricamento dinamico
e Lefunzioniprintf e libc_start_main devono essere fornite dall’esterno

— .symtab: lista completa dei simboli

CYBER
s CHALLENGEIT

il
15

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

readelf Visualizzare la tabella dei simboli (-s / --symbols)

DEFAULT 6§ _I0_stdin_used
DEFAULT 25 _end

HIDDEN 6§ _dl_relocate_static_
DEFAULT 6 _start

DEFAULT 25 _ _bss_start

DEFAULT 6 main

HIDDEM 24 THMC_END__

HIDDEN 4 _dnit

4 OBJECT GLOBA
@ NOTYPE GLOBA
5 FUNC GLOBA
38 FUNC GLOBA
@ NOTYPE GLOEBA
26 FUNC GLOBA
0 OBJECT GLOBA
B0 FUNC GLOBA

L
L
L
L
L
L
L
L

o Nella sezione .symtab
— Compare la funzione main all'indirizzo x401126

— Il programma non parte in realta dalla funzione main ma da _start

« Confrontate I'indirizzo di _start con l'entry-point del programma
nell’intestazione del file ELF

CYBER UdA
= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025 w

readEIf Visualizzare il contenuto di una sezione

B T

e Opzione -x <nome_sezione> / --hex-dump=<nome_sezione>

% readelf -x .rodata hello
Hex dump of sec '.rodata’:
Hello world!.

5 readelf -x .text hello

PTE1.1.H. .&.@..
_-.I'I. . .1:

=

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Esercizi
T

Svolgere la challenge

Challenge SS 03 — dissection

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 30.04.2025

https://ctf.cyberchallenge.it/challenges#challenge-99

PARTE 3
I e
Dall’eseguibile al sorgente

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Dal file eseguibile all’assembly

2 5

e Spesso abbiamo a disposizione solo il file oggetto

— Il codice del programma si trova di solito nella sezione .text

Con readelf possiamo leggere il contenuto della sezione in esadecimale,
ma non € per nulla comprensibile

e Civiene in aiuto objdump

— Simile a readelf, ma € in grado di visualizzare il contenuto della
sezione .text in assembly invece che in LM

— Un programma che trasforma un codice in LM in codice assembly si
chiama disassemblatore.

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

=

objdump

5 objdump --disassembler-color=on -d hello

file format elfed-x86-64

Disassembly of section .init:

OOOEAEEAER4AR1AE80 < _init>:
4010006 : f3 8f 1le fa endbred

401004 : 48 83 ec 08 sub 50x8,%rsp
401008 48 8b 05 dl 2f 08 88 mov Bx2fdl (%rip),%rax
401001 : 48 85 cO@ test 12
401012: T4 02 je 101616
401014 : ff de call &M ax

401016: 48 83 add 50x8 ,%rsg

48101a: c3 FIEAE
Disassembly of section .plt:
DEAOOAAOBE401020 <printfEplt-0x10>:

401020: ff 35 ca 21 00 @0
401026: ff 25 cc 2T 00 @0

CYBER
CHALLENGEIT

Bx2fca(%rip)
*Qx2fTcc |: i :':'

481082c: af 1f 48 08 Bx0 (%rax)

© CINI - 2021, Gianluca Amato - 2025

Disassemblare il programma (-d / --disassemble)

——disassebler-color=on
visualizza I'output a colori

403fed <__gmon_start__pEBase>

< _init+@x16>

403ff0 <_GLOBAL_OFFSET_TAELE_+0x8>
403ff8 <_GLOBAL_OFFSET_TAELE_+0x18>

Rel. 30.04.2025

Objdump Disassemblare una singola funzione (--disassemble=<func>)

5 objdump --disassembler-color=on --disassemble=main hello

hello: file format elfed-x86-64

Disassembly of

Disassembly of section .

1401126 <main::

push
mow
mow
mow
call
mow
pop
ret

o e o

[EN I =N

Disassembly of section .fini:

5

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Esercizi
Tus |

Svolgere la challenge

Challenge SS 02 — acrostic

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 30.04.2025

https://ctf.cyberchallenge.it/challenges#challenge-98

Dal file eseguibile al C

s N

e |l linguaggio assembly € comunque di difficile lettura

e Vorremmo riuscire a tornare indietro dal codice oggetto ad un
programma ad alto livello scritto in C

— Ci serve un decompilatore.

e |'operazione non € comunque del tutto automatizzabile e serve un po
di intervento manuale per ottenere un codice C leggibile

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

18

Decompilatore in azione

R TERE:
| & 4
calculator)(REF[:t.r 3 size_t sVarl;
6 char cvar2;
T 20400846 41 56 PUSH R14 7 mt 1ftj1'3r; .
@04@08d3 41 55 PUSH R13 8 mld. pvVard;
@04008da 41 54 PUSH R12 _‘-’ _:55ize_t _.haIS.
@a4@08dc 55 PUSH REP .1@ long l\ufar:rﬁ_;.
ea4ee8dd 53 PUSH REX 11 ulong*u'ular:l, x
@04008de 48 83 ec 3@ suB RSP,0x30 12 | byte *"b"ﬁ”ﬁ'
0040082 64 48 8 MOV RAX,qword ptr FS:[Bx28]) _13 bytestphiard; _
84 25 28 _14 long tn_F.?_C.IFFDET'
o0 00 00 b5 t;zoi |,J..vral
pe4BOBEh 48 89 44 MoV qword ptr [RSP + @x28]=>local_30,RAX O
17 | byte bVariz;
24 28 | : ST
Pe400ETE 31 co XOR EAX, EAX _15 ;lze_fl-cc?i_SS,
0e4008T2 48 8d 3d LEA ROE, 5 - Sdslaaiobhrluiroiiy _@@400c34] 19 BI"te ?Cal_l_5g,]
3b 03 00 2@ 20 51ze_t1lcc1a_: ?,
00400870 8 42 fe CALL <EXTERNAL>: : puts oy ulong local 49,
|'| FFOfF 22 undefined8 local 38:
local .
004808fe 48 8d 3d LEA RDI, [s_Simple_Sum_Calculator_0@4eoc4a] [1ong local 30:
45 03 0@ 0@ 24 —
20400005 e8 36 fe CALL <EXTERNAL>: :puts 25 Fuar-_z =0; .)
26 local_38 = *{long *)(in_FS_OFFSET + @x28);
£ FF - e
80400903 48 8d 3d LEA ROE, [§ otbsiaaiobhludnoiiy _PR4B0C34] 27 PUtS("-: ---------------- "}:
23 03 @0 oo 28 puts("Smple Sum Calculatoruj,
20400911 e8 2a fe CALL <EXTERNAL>: :puts 120 | puts("---------commoooaoont)
ff ff "ﬁ 30 putchar(1@);
#a400916 bf Ba 8@ Mo EDI,@xa :31 _PIIHt‘F_ChRI:I,"HD’N many values to you want to sum up?\n> ");
20 BB 32 | while(true) {
pe40091b 8 10 fe CALL <EXTERNAL=: :putchar 33 }\"31'3 = _ is0c99_scanf("%zu",&local 58);
FfOfF 34 if (ivars == 1) break;
Pe4pE920 48 8d 35 LEA RST, [s_How_many_values_to_you_want_to_s 35 —bprintf_chk(1,"Try againin= ");
o A i 36 flush_line():

GYBER
CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Decompilatori

Ghidra: uno strumento per il reverse engineering sviluppato dalla NSA

(National Security Agency). E open source e ampiamente utilizzato
https://ghidra-sre.org/

IDA Pro: disassemblatore e decompilatore sviluppato da Hex Rays. La

versione gratuita € limitata alle architetture x86 e x86-64. Le versioni a
pagamento sono costose.

https://hex-rays.com/ida-pro

Binary Ninja: come IDA Pro, si tratta di software a pagamento dotato
di una versione free limitata.

https://binary.ninja/

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

18

https://ghidra-sre.org/
https://hex-rays.com/ida-pro
https://binary.ninja/

La nostra scelta

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

— Su Linux, meglio lanciarlo da un terminale

Installazione di Ghidra
s §
e Scaricare Ghidra dal sito GitHub
e Unzippare il file ottenuto
« Lanciare Ghidra dal file ghidraRun (Linux / Mac) o ghidraRun.bat
(Windows)
superiore

seguenti comandi

CYBER
= C

e Le ultime versioni di Ghidra richiedono per funzionare Java 21 o
o Su distribuzioni Debian e derivate (Ubuntu, Kali, etc...) dare da root i

— apt install openjdk-21-jdk
HALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 30.04.2025

https://github.com/NationalSecurityAgency/ghidra/releases

Dimostrazione uso di Ghidra
.
questa parte non e coperta dalle slide per la difficolta di tradurre in

forma scritta le operazioni svolte su un software con interfaccia
grafica

Demo

Decompilazione del file hello

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

File senza tabella dei simboli

s 5

e E possibile rimuovere la tabella dei simboli da un file eseguibile
(sezioni .symtab e .strtab) conil comando strip

ystery

-o mystery-stripped
ary mystery-stripped

¥. 1 amato amato 16680 Apr 14 11:58 mystery

ystery
1 amato amatc 14952 Apr 14 12:22 mystery-stripped

La decompilazione (e, nelle prossime lezioni, il debugging) d
programmi senza tabelle dei simboli & piu complesso

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

=

Dimostrazione uso di Ghidra
I
Demo

Decompilazione del file mystery-stripped

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 30.04.2025

Esercitazione uso di Ghidra
N
Esercizio

Cosa fa Il programma mychallenge-stripped ?

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 30.04.2025

Gianluca Amato

Universita di Chieti-Pescara

- Z= CYBER
Software Security 02 & CUALLENGET
CYBERSECURITY
Dal sorgente al codice eseguibile (e ritorno) \ NATIONAL

“ani: " [ABORATORY

=(IN[= https://cybersecnatlab.it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

