
Software Security 02

Dal sorgente al codice eseguibile (e ritorno)

Software Security 02

Dal sorgente al codice eseguibile (e ritorno)

Gianluca Amato
Università di Chieti-Pescara

https://cybersecnatlab.it

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

2

License & Disclaimer

This presentation is licensed under the
Creative Commons BY-NC License

To view a copy of the license, visit:

http://creativecommons.org/licenses/by-nc/3.0/legalcode

 We disclaim any warranties or representations
as to the accuracy or completeness of this
material.

 Materials are provided “as is” without
warranty of any kind, either express or
implied, including without limitation,
warranties of merchantability, fitness for a
particular purpose, and non-infringement.

 Under no circumstances shall we be liable for
any loss, damage, liability or expense incurred
or suffered which is claimed to have resulted
from use of this material.

License Information Disclaimer

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

3

CPU e memoria

● Per queste lezioni di software security, le parti di un computer su cui
focalizzeremo l’attenzione sono:
– la CPU (Central Processing Unity);
– la memoria centrale (talvolta chiamata RAM).

● Sulla CPU diremo di più nelle prossime lezioni.
● Prima di iniziare la vera lezione, diciamo due parole sulla memoria centrale.

– Ci interessa come un programma vede la memoria centrale.
– In realtà le cose sono più complesse, ma questa complessità è gestita dal sistema

operativo.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

4

La memoria centrale

● La memoria centrale è una sequenza
di celle:
– Ogni cella ha un indirizzo
– Ogni cella contiene un byte

● numero binario di 8 bit
● ovvero numero da 0 a 255

● Le istruzioni della CPU consentono di
accedere a qualunque cella di
memoria, partendo dall’indirizzo.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

5

Numerazione in base 16

● Spesso (sempre) scriveremo i numeri in base 16 (esadecimale).
● Vi ricordo che i numeri in base 16 si scrivono con le cifre da 0 a 9 e le lettere da A

(10) ad F (15).
– Un byte in base 16 contiene un numero da 0 ad FF (255)
– Su due byte possiamo mettere un numero da 0 ad FFFF (65535)
– ...e così via

● Se incontriamo un numero, come facciamo a capire se è in base 10 o in base 16?
– Se contiene lettere, è in base 16 (1D5)
– Talvolta useremo il prefisso 0x o il suffisso h per i numeri in base 16 (0x154)
– Se il numero ha degli 0 iniziali, è in base 16 (0154)

● A meno che non usi solo le cifre 0 ed 1, al ché potrebbe essere in base 2

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

6

PARTE 1

Dal sorgente all’eseguibile

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

7

Il linguaggio macchina

● Il computer capisce un solo linguaggio: il linguaggio macchina (d’ora in poi LM)
● Vantaggi

– è possibile sfruttare tutte le potenzialità dell’hardware.
● Svantaggi

– estremamente complesso;
– ogni istruzione è una sequenza di byte (difficile da ricordare);
– cambia completamente da un famiglia di CPU all’altra

● Intel/AMD a 64 bit
● ARM (CPU usata per gli smartphone o i nuovi Mac)
●

– il programma è strettamente legato al sistema operativo per cui è scritto:
● un programma in LM per Linux non funziona su Windows o Mac, neanche se la CPU è la

stessa.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

8

Un programma in LM

● Questo programma visualizza la scritta “Hello, world!” sullo schermo e
poi termina

● Funziona su PC con Linux e CPU Intel/AMD a 64 bit

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

9

Il linguaggio assembly

● Il LM non è fatto per gli umani e
nessuno (oggi) lo usa direttamente.

● In qualche occasione si usa il linguaggio
assembly.
– Ogni istruzione corrisponde a una

istruzione in LM.
– Più facile da ricordare rispetto al LM.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

10

Assembly e linguaggio macchina

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

11

Dal linguaggio assembly al linguaggio macchina

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

12

Linguaggi ad alto livello

● Sia il LM che l'assembly sono linguaggi a basso livello.
● Normalmente si programma con linguaggi ad alto livello (C, Python, Java, ...):

– più semplici da comprendere per un essere umano;
– non dipendono dalla CPU utilizzata;
– non dipendono (almeno per le cose semplici) dal sistema operativo;
– non sono eseguibili direttamente dalla CPU.

● Come si fa a far eseguire un programma scritto in linguaggio ad alto livello?
– compilatore
– interprete
– soluzioni ibride

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

13

Compilatore

● Legge il programma in linguaggio ad alto livello e lo traduce in
linguaggio macchina tutto in una volta. Una volta tradotto il
compilatore non serve più
– Esempi di linguaggi tipicamente compilati: C, C++, Rust

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

14

Compilazione del linguaggio C

● Ci occuperemo nelle prossime lezioni del linguaggio C
● Fasi della compilazione di un programma in:

– preprocessing
– compilazione vera e propria
– assemblaggio (assembly)
– collegamento (linking)

● Nelle lezioni useremo il compilatore GCC (GNU Compiler Collection)
– disponibile per molti sistemi operativi;
– lo standard per i sistemi Linux.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

15

Fase di preprocessing

● Si occupa di eseguire le direttive presenti nel codice sorgente, ovvero
le righe che iniziano con # come #include, #define, etc…

● Si può dire al gcc di fermarsi alla fase di preprocessing con l’opzione -E

gcc –E hello.c

hello.c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

16

Fase di compilazione vera e propria

● Il codice dalla fase precedente è trasformato in istruzioni assembly.
● Si può dire al gcc di fermarsi alla fase di compilazione vera e propria

con l’opzione -S

gcc –S hello.c

hello.c

hello.s

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

17

Fase di assemblaggio

● Il codice assembly viene tradotto in LM
– ma in un formato che non è ancora pronto per essere eseguito.

● Si può dire al gcc di fermarsi alla fase di assemblaggio con l’opzione -c.

gcc –c hello.c

hello.o
hello.c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

18

Il codice oggetto

● Il file .o che si ottiene con gcc -c si chiama file oggetto.
– Per essere più precisi, file oggetto non eseguibile.

● Contiene il programma in linguaggio macchina e informazioni di
supporto.

● È un file binario, ovvero contiene sequenze di byte che non sono
interpretabili come testo.
– Se si prova ad aprilo con un editor di testo come Visual Studio Code, si

ottiene spazzatura.
● Si può vederne il contenuto con un editor esadecimale.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

19

● File hello.o visto col programma GHex di Linux
– Vedremo in futuro programmi specifici per questo tipo di file

Il codice oggetto visto da GHex

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

20

Fase di collegamento

● Codici oggetti multipli vengono combinati tra di loro e con le librerie di
sistema (.dll in Windows, .so in Linux) in un unico file eseguibile.
– Ad esempio, la funzione printf usata nel programma hello.c si trova

nella libreria C di Linux

gcc hello.o

hello.o a.out
(Nome convenzionale del file
eseguibile generato da gcc)

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

21

Collegamento statico e dinamico

● Due approcci sono possibili per la fase di collegamento
– Collegamento dinamico: il file eseguibile dipende da librerie dinamiche

(file oggetto condivisi) e funziona solo in loro presenza.
● Il codice di printf non viene copiato nel file eseguibile.

È la soluzione di default
– Collegamento statico: il file eseguibile generato è auto-contenuto e non

dipende da nessuna libreria esterna.
● Il codice di printf viene copiato nel file eseguibile

Si può attivare con l’opzione -static di gcc

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

22

Collegamento dinamico

● Il file è relativamente piccolo, solo 16.616 byte
● Il comando ldd mostra le librerie dinamiche utilizzate:

– /lib64/ld-linux-x86-64.so: è il loader (vedi dopo)
– linux-vdso.so.1: accelera alcune chiamate al sistema operativo
– /lib64/libc.so.6: è la libreria C, e contiene il codice di printf
– I nomi di queste librerie possono cambiare da una versione di Linux ad un altra.

Quelli che trovate qui sono per Fedora Linux.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

23

Collegamento statico

● Il file è molto più grande !
– contiene una copia di varie funzioni della libreria C.

● Per funzionare non ha bisogno che nel sistema sia presente alcuna
libreria:
– Il comando ldd risponde che non si tratta di un eseguibile con

collegamento dinamico.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

24

Il caricatore (loader)

● La parte del sistema operativo che si occupa di caricare un programma
in memoria ed eseguirla.

● Per gli eseguibili statici:
– Molto semplice, carichi il file in memoria e via !

● Per gli eseguibili dinamici:
– Bisogna modificare il file eseguibile durante il caricamento:

● gli indirizzi delle funzioni provenienti dalla librerie dinamiche (come printf)
sono fittizi;

● vanno riempiti con gli indirizzi reali.
– In Linux su Intel a 64bit il lavoro è svolto da un programma specifico

● /lib64/ld-linux-x86-64.so.2

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

25

PARTE 2

Il codice oggetto

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

26

Il formato ELF

● In Linux il formato standard per i file oggetto è il formato ELF
– ELF: Executable and Linkable Format (https://wiki.osdev.org/ELF)

● Ci sono tre tipi di file oggetto:
– rilocabili (relocatable): contengono codice e dati che possono essere

collegati con altri file rilocabili per creare nuovi file ELF (esempio, il file
hello.o)

– eseguibili (executable): contengono programmi pronti ad essere eseguiti
(esempio, i file hello ed hello-static)

● possono dipendere da librerie dinamiche oppure no
– condivisi (shared): come i rilocabili, ma possono svolgere il ruolo di

librerie dinamiche (esempio, il file /lib64/libc.so.6)

https://wiki.osdev.org/ELF

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

27

Struttura di un file ELF

● Un file ELF può essere usato in due contesti:
– esecuzione di un programma;
– collegamento con altro codice oggetto.

● Per svolgere questo doppio compito, il file ELF
può essere visto contemporaneamente in due
modi distinti:
– come un insieme di sezioni;
– come un insieme di segmenti.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

28

Struttura di un file ELF

● Una intestazione iniziale (ELF header)
– contiene informazioni sulla struttura del file ELF.

● Il file ELF è diviso in sezioni
– Manipolate dalla fase di collegamento.
– Elenco presente nella “Section header table”.

● Le sezioni sono raggruppate in segmenti
– Manipolati dal caricatore (loader).
– Elenco presente nella “Program header table”.
– Solo per i file eseguibili.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

29

Sezioni rilevanti di un file ELF

● .text: istruzioni del programma
● .data: dati inizializzati
● .bss: spazio usato dal programma per dati non inizializzati
● .rodata: simile a .data, ma per dati in sola lettura
● .symtab, .strtab: tabella dei simboli definiti nel programma
● .dynsym, .dynstr: tabella della funzioni da librerie dinamiche
● .dynamic, .rela.dyn, .rela.plt, .got, .got.plt: informazioni per il loader

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

30

Analizzare il contenuto del file ELF

● Strumenti su riga di comando per analizzare un file ELF:
– strings
– objdump
– readelf
– nm

● Strumenti grafici per analizzare un file ELF:
– Cutter (https://github.com/rizinorg/cutter)
– Elfparser-ng (https://github.com/mentebinaria/elfparser-ng)

https://github.com/rizinorg/cutter
https://github.com/mentebinaria/elfparser-ng

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

31

strings

● Semplice strumento per
visualizzare tutte le stringhe
presenti in un file

● strings visualizza
– sequenze di caratteri stampabili
– lunghe almeno 4 caratteri
– seguite da caratteri non stampabili

● Le stringhe potrebbero contenere
valori segreti.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

32

strings

● -d (o --data): visualizza solo le stringhe presenti nella sezioni dati di
un file ELF

● -n <num> (o --bytes=<num>): visualizza sequenze di caratteri
stampabili lunghe almeno <num> (il default è 4)

● -e <encoding> o (--encoding=<encoding>): imposta la codifica
utilizzata per le stringhe.
– per default, solo i caratteri ASCII standard (codici 0–127) vengono

considerati stampabili;
– per stringhe che contengono anche caratteri accentati, usare -eS.

Alcune opzioni di strings

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

33

Ambiente per l’esecuzione di codice a 32bit

● Alcune challenge sono per CPU Intel a 32bit
– La vostra CPU è sicuramente a 64bit
– Può eseguire anche codice a 32bit, ma è necessario installare dei

pacchetti addizionali
● Su distribuzioni Debian e derivate (Ubuntu, Kali, etc…), installare il

pacchetto libc6-i386 con il comando
– apt install libc6-i386

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

34

Esercizi

Svolgere la challenge

SS_01 – The safe

https://ctf.cyberchallenge.it/challenges#challenge-97

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

35

readelf

● Type
– EXEC (eseguibile)

– REL (rilocabile)

– DYN (condiviso)

● Machine
– Tipo CPU
– 32 / 64 bit

Visualizzare l’intestazione (-h / --file-header)

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

36

● Name: nome della sezione
● Type: tipo della sezione (NULL: sezione vuota, PROGBITS: programmi e dati, etc...)
● Address: indirizzo in memoria dove viene caricata la sezione (per i file eseguibili)
● Off: indirizzo della sezione a partire dall’inizio del file (offset)
● Size: dimensione della sezione
● Flags: informazioni sulla sezione (A: occupa spazio in memoria, W: è scrivibile, X: contiene istruzioni, etc...)

readelf Visualizzare le sezioni (-S / --sections)

-W per formato
largo più leggibile

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

37

readelf

● Si tratta del contenuto delle sezioni
– .dynsym: simboli usati per il caricamento dinamico

● Le funzioni printf e __libc_start_main devono essere fornite dall’esterno
– .symtab: lista completa dei simboli

Visualizzare la tabella dei simboli (-s / --symbols)

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

38

readelf

● Nella sezione .symtab
– Compare la funzione main all’indirizzo x401126
– Il programma non parte in realtà dalla funzione main ma da _start

● Confrontate l’indirizzo di _start con l’entry-point del programma
nell’intestazione del file ELF

Visualizzare la tabella dei simboli (-s / --symbols)

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

39

readelf Visualizzare il contenuto di una sezione

● Opzione -x <nome_sezione> / --hex-dump=<nome_sezione>

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

40

Esercizi

Svolgere la challenge

Challenge SS_03 – dissection

https://ctf.cyberchallenge.it/challenges#challenge-99

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

41

PARTE 3

Dall’eseguibile al sorgente

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

42

Dal file eseguibile all’assembly

● Spesso abbiamo a disposizione solo il file oggetto.
– Il codice del programma si trova di solito nella sezione .text
– Con readelf possiamo leggere il contenuto della sezione in esadecimale,

ma non è per nulla comprensibile
● Ci viene in aiuto objdump

– Simile a readelf, ma è in grado di visualizzare il contenuto della
sezione .text in assembly invece che in LM

– Un programma che trasforma un codice in LM in codice assembly si
chiama disassemblatore.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

43

objdump Disassemblare il programma (-d / --disassemble)

--disassebler-color=on
visualizza l’output a colori

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

44

objdump Disassemblare una singola funzione (--disassemble=<func>)

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

45

Esercizi

Svolgere la challenge

Challenge SS_02 – acrostic

https://ctf.cyberchallenge.it/challenges#challenge-98

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

46

Dal file eseguibile al C

● Il linguaggio assembly è comunque di difficile lettura.
● Vorremmo riuscire a tornare indietro dal codice oggetto ad un

programma ad alto livello scritto in C.
– Ci serve un decompilatore.

● L’operazione non è comunque del tutto automatizzabile e serve un po’
di intervento manuale per ottenere un codice C leggibile.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

47

Decompilatore in azione

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

48

Decompilatori

Ghidra: uno strumento per il reverse engineering sviluppato dalla NSA
(National Security Agency). È open source e ampiamente utilizzato.
https://ghidra-sre.org/

IDA Pro: disassemblatore e decompilatore sviluppato da Hex Rays. La
versione gratuita è limitata alle architetture x86 e x86-64. Le versioni a
pagamento sono costose.
https://hex-rays.com/ida-pro

Binary Ninja: come IDA Pro, si tratta di software a pagamento dotato
di una versione free limitata.
https://binary.ninja/

https://ghidra-sre.org/
https://hex-rays.com/ida-pro
https://binary.ninja/

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

49

La nostra scelta

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

50

Installazione di Ghidra

● Scaricare Ghidra dal sito GitHub
● Unzippare il file ottenuto
● Lanciare Ghidra dal file ghidraRun (Linux / Mac) o ghidraRun.bat

(Windows)
– Su Linux, meglio lanciarlo da un terminale

● Le ultime versioni di Ghidra richiedono per funzionare Java 21 o
superiore.

● Su distribuzioni Debian e derivate (Ubuntu, Kali, etc…) dare da root i
seguenti comandi:
– apt install openjdk-21-jdk

https://github.com/NationalSecurityAgency/ghidra/releases

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

51

Dimostrazione uso di Ghidra

Demo

Decompilazione del file hello

questa parte non è coperta dalle slide per la difficoltà di tradurre in
forma scritta le operazioni svolte su un software con interfaccia

grafica

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

52

File senza tabella dei simboli

● È possibile rimuovere la tabella dei simboli da un file eseguibile
(sezioni .symtab e .strtab) con il comando strip.

● La decompilazione (e, nelle prossime lezioni, il debugging) di
programmi senza tabelle dei simboli è più complesso.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

53

Dimostrazione uso di Ghidra

Demo

Decompilazione del file mystery-stripped

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

54

Esercitazione uso di Ghidra

Esercizio

Cosa fa il programma mychallenge-stripped ?

Software Security 02

Dal sorgente al codice eseguibile (e ritorno)

Software Security 02

Dal sorgente al codice eseguibile (e ritorno)

Gianluca Amato
Università di Chieti-Pescara

https://cybersecnatlab.itFINE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

