Gianluca Amato

Universita di Chieti-Pescara

- £ = CYBER
Software Security 03 == CHALLENGEIT

CYBERSECURITY
Programmazione in C

'\ NATIONAL
ani:+ L ABORATORY

https://cybersecnatlab.itlm

License & Disclaimer
e

License Information Dlsclalmer

This presentation is licensed under the We disclaim any warranties or representations
Creative Commons BY-NC License as to the accuracy or completeness of this
material.

> Materials are provided “as is” without
warranty of any kind, either express or
implied, including without limitation,
warranties of merchantability, fitness for a
particular purpose, and non-infringement.

> Under no circumstances shall we be liable for
any loss, damage, liability or expense incurred
http://creativecommons.org/licenses/by-nc/3.0/legalcode or suffered which is claimed to have resulted
from use of this material.

To view a copy of the license, visit:

GYBER 407y
* CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025 v

PARTE 1
—, [
Il inguaggio C

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Il linguaggio C

o

Il C & un linguaggio di programmazione nato negli anni ‘70
— per la scrittura di software di sistema, fino ad allora sempre scritti in assembly
e Privilegia:
— Efficienza del codice compilato
— Compattezza del codice sorgente
— Controllo totale della macchina
e A scapito di:
— Facilita di utilizzo
e sintassi poco amichevole

e necessita di gestire in maniera manuale la memoria
 libreria standard minimalista

— Portabilita
« molti aspetti non sono completamente definiti dal linguaggio

CYBER
= CHALLENGEIT

18

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

C e Java

s
o Alivello elementare, si pud pensare a C come Java senza le classi

— | tipi “primitivi” di C e Java sono simili: int, short, char, float

— La sintassi delle istruzioni (while, for, if

,...) € simile.
— Le funzioni C corrispondono ai metodi statici di Java

— Siusano le parentesi graffe per delimitare i blocchi come in Java
— L'esecuzione parte dalla funzione main

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Esempio: Java vs C
B

Java C

class Somma { // importa le funzioni standard di input/output (printf)
#include <stdio.h>

// calcola la somma dei numeri da "a" fino a "b"

public static int somma(int a, int b) { // calcola la somma dei numeri da "a" fino a "b"
< int somma = ©; _ int §o?ma(1nt ?r@}nt b) {
] for (int 1 = a; 1 <= b; i++) {) int somma = ©; .
oy somma += i: / for (int i = a; i <= b; i++) {
g } ' g somma += 1i;
c return somma; = 3
o } o return somma;
n “ B}
public static void main(String[] args) { _ o .
int res = somma(l, 10); v01d_ma1n(1nt argc, char *argv[]) {
System.out.println("Somma: " + res); int res = somma(1, 10);
1 printf("Somma: %d\n", res);
} }

= CYBER
CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Esempio: Python vs C
N

Python C
calcola la somma dei numeri da "a" fino a "b" // importa le funzioni standard di input/output (printf)
def somma(a, b): #include <stdio.h>

somma = 0

for i in range(a, b+1): // calcola la somma dei numeri da "a" fino a "b"

int somma(int a, int b) {
int somma = 0;
for (int 1 = a; i <= b; i++) {
somma += 1i;
}

return somma;

somma += 1
return somma

somma.py

res = somma(l, 10)
print("Somma:", res)

somma.c

}

void main(int argc, char *argv[]) {
int res = somma(l1, 10);
printf("Somma: %d\n", res);

: CYBER
CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Differenze tra C e Java (e Python)

s ¥
e Direttive del preprocessore
[J

Input e output
e Array
e Stringhe

Puntatori

e Gestione della memoria

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Le direttive

e Le direttive C sono delle speciali istruzioni che iniziano con #
e Non sono vere istruzioni C:

— vengono prese in considerazione durante la fase di pre-elaborazione

— spariscono dal codice prima che venga effettivamente compilato

e Viricordo che e possibile interrompere il compilatore alla fase di pre-
elaborazione per vederne il risultato

- gcc -E nomefile.c

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

18

La direttiva #include

o ¥

* #include <f<le.h>

— Includeil file indicato all'interno del file
corrente.

Importa funzioni di
input/output (puts)

#include <stdio.h>

— In pratica: serve ad importare le funzioni
di libreria, in maniera analoga e TS wortd i)
all'istruzione import di Java e Python.
* stdio.h: funzioni di input/output
* string.h: funzioni per le stringhe

* stdlib.h: funzioni per 'allocazione
della memoria, conversioni di tipo, ...

YBER

= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025 -

La direttiva #define

o

 #define NOME VALORE MESSAGE diventa
equivalente a

— Definisce una macro. _ "Hello world!"™
— Daorain poi tutte le volte che inelude <Std#,,,,/,/,’)

nel programma Compare NUME #define MESSAGE "Hello world!"

3 ri 1 void main() {
esso verra rimpiazzato da e NESASE) :
VALORE. }

— Non e una variabile, € solo una
sostituzione sintattica.

YBER

= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025 N_%

Output - puts

TR
* Lafunzione per l'output piu semplice &€ puts

- puts(s) : mandain output la stringa s

e Esemplo:
#include <stdio.h>
#define MESSAGE "Hello world!"
void main() {
puts(MESSAGE) ;
}
CYBER
£ CHALLENGE.IT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Output - printf (1)
o
* Lafunzione per 'output piu versatile e usata € printf

- printf(format, paraml, param2, ..)

e La stringa format contiene la stringa da stampare mischiata con alcuni
specificatori di conversione:

— Sequenze di caratteri che iniziano con %,

— Determinano come interpretare i parametri parami, param2

— Ad esempio, %d indica un parametro di tipo intero

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

18

Output - printf (2)

I =

intero in
esadecimale

#include <stdio. h>

_ 42 - 2a

_ _ = ~ 42 - pippo
o | void maln]gz {d \) : 42 - fc8700d
= printf("%d - %x\n", 42, 42); - -
_E printf("%d - %s\n", 42, "pippo"); Segmentation fault (core dumped)
Qo printf("%d z/%x\n”, 42, "pippo");

printf("%d - %s\n", 42, 42);
stringa lo specificatore di conversione dice

che passo una stringa, ma in realta
passo un numero

CYBER
s CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Il manuale delle funzioni della libreria C

s N
. .

Potete visualizzare la documentazione di una funzione C dalla shell di
Linux con il comando man:

— man puts

— Per alcune funzioni, come printf, esiste una comando della shell con lo
stesso nome. In tal caso usare il comando

* man 3 printf

il 3 chiarisce che siamo interessati alla sezione 3 del manuale
la sezione 3 € quella sulle funzioni della libreria C

e In alternativa: https://linux.die.net/man/

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

https://linux.die.net/man/

Gli array (1)

o X
e Gliarray in C sono simili a quelli Java ma:

— InJava, se a € un array, a.length € la sua lunghezza
— In C non esiste un modo per scoprire la lunghezza di un array
e Non esattamente vero con l'introduzione dei “variable length array”, ma noi
non li utilizzeremo.

e In Python gli array non si usano

— Possiamo pensare agli array C come le liste Python

— Come in Java, non possiamo conoscere la lunghezza di un array
— Tutti gli elementi di un array devono essere dello stesso tipo

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Gli array (2)
Ty

#include <stdio.h> /
J size_t e il tipo da usare per indici

int somma_array(size_t len, int a S .
v ‘i])i - e lunghezze di array

int somma = 0;
for (size t i = 0; 1 < len; i++) {

somma += a[i];

} R

return somma; N - -
© ~ |
G void main() { |

int mioarray[5] = {10, 20, 30, 40, 50}; Funzione che calcola la somma degli

int s = somma_array(s, mioarray); ~ elementi di un array a. Notare che

, printf("La somma dell'array e: %d\n", s); devo passare separatamente come
parametro anche la lunghezza
dell'array.

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025 \ﬁ

Passaggio di parametri (1)

s

e In generalein C il passaggio dei parametri € per valore

— Se passo ad una funzione un valore di tipo int, in realta passo una copia
di quel valore.

— Le modifiche alla copia non si riflettono all’originale
. :

e |'unica eccezione & se passo un array ad una funzione

— In questo caso, passo il suo indirizzo (passaggio per riferimento)
— Come avviene in Python per tutti i tipi

— O come avviene in Java per tutti i tipi non primitivi.
 Modifiche all’array nella funzione si riflettono sul chiamante

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

=

Passaggio di parametri (2)

BT

#include <stdio.h>

void change(size_t 1len, int a[]) {

for (size_t i = 0; i < len; i++) {”/ A
) a[i] = 0; 1 non viene
len = 999; / modificato, ma
ol 3 mioarray Si
Sl void main() {
© size_t 1 = 5; g
G int mioarray[5] = {10 20, 30, 40, 50};
change(1l, mioarray);
printf("Ll: %zu v: %d\n", 1, mioarray[0]);
zu € il codice da
usare per le variabili
di tipo size_t
Z= CYBER " "
= CHALLENGE.IT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025 \ﬂ

Stringhe
20
e In C non esiste un vero tipo per le stringhe

e Le stringhe vengono implementate come array di byte che terminano
con il byte zero.

— La corrispondenza tra byte e caratteri stampabili dipende dal set di
caratteri in uso nel sistema (ASCII, UTF-8, etc...)

— Quando si manipolano le stringhe bisogna stare attenti alla dimensione
massima.

— Vedremo quanti problemi creera questo fatto

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

18

Input - fgets (1)

2 X

* La funzione piu semplice (tra quelle sicure) per I'input € fgets
- fgets(str,

len, stdin)

legge unariga, e mette il risultano nell’array str

la lunghezza massima della stringa € 1en-1

in caratteri in eccesso vengono ignorati

I’eventuale carattere di andata a capo finale diventa parte di str

* stdin denota lo standard input (normalmente la tastiera): va specificato
perché fgets puo essere usata anche per leggere da un file

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

18

Input - fgets (2)

2 N

"~ Nelle slide, metto in
grassetto quanto digitato

#include <stdio. h>

dall’'utente
#define SIZE 30 \\\
(&) N
@ || void main() { Inserisci il nome: Gianluca
1B char nome[SIZE]; > Ciao Gianluca
= printf("Inserisci il nome: ");
fgets(nome, SIZE, stdin);
printf("Ciao %s\n", nome);
}
Non si vede nella slide, ma c’é una
riga vuota perché vengono stampati
due caratteri di andata a capo: quello
digitato dall’'utente e che si trova in
nome, € il \n di printf.
£= CYBER
=F CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Input - fgets (3)

2

« Se l'array destinazione della stringa e troppo piccola... c’¢ una
vulnerabilita.

dimensione dell’array nome

ridotto a soli 10 caratteri
#include <stdio.h> N

o #define SIZE 30
O B void main() {
o) char nome[10];
= printf("Inserisci il nome: ");
fgets(nome, SIZE, stdin);
printf("Ciao %s\n", nome); Inserisci il nome: Questo nome e probabilmente troppo lungo
} Ciao Questo nome é probabilmente
Segmentation fault (core dumped)
£ CYBER 0
= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Input e conversioni di tipo

2

e Se sideve leggere in input un numero, si puo leggere una stringa e poi
convertirla in numero.

#include <stdio.h> ‘ per la funzione atoi
#include <stdlib.h> ~—
fdefine SIZE 30 atoi restituisce l'intero
8 void main() { rappresentato nella
J%) char buffer[SIZE]; stringa buffer
(8]
D2 printf("Immetti lato di un quadrato: ");
fgets(buffer, 30, stdin);
int lato = atoi(buffer);
g Immetti lato di un quadrato: 20
printf("Area: %d\n", lato * lato); ~ Area: 400
L= CYBER -
=¢ CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Esercitazione
s |
Esercizio

Trovare la password per il programma mychallenge?2

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

PARTE 2

T
Puntatori e allocazione dati

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Utilizzo della memoria (1)

2 N

e La maggior parte dei linguaggi di programmazione consentono al

programmatore di utilizzare tipi di dati senza preoccuparsi di come
sono rappresentati in memoria

e Allo stesso modo, i programmatori ignorano dove i dati si trovano in
memoria (in gergo piu tecnico, si parla di allocazione dei dati)

— | compilatori prendono queste decisioni di concerto col sistema
operativo.

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Utilizzo della memoria (2)

28 8
)

e In alcunilinguaggi, come il C, l'utilizzo della memoria é controllabile
dal programmatore.

— Si possono allocare e deallocare zone di memoria in maniera manuale
— Si puo scoprire dove risiede in memoria un certa variabile

— Si puo manipolare liberamente il contenuto della memoria

In C, se x € una variabile, &x e I'indirizzo nella memoria dove x e
memorizzato

— Il primo degli indirizzi, se x richiede piu di un byte

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Allocazione memoria (1)

#include <stdio.h> ’p € lo specificatore per gli

void main() { indirizzi di memoria size.of restituisce_la guantita
int i; T di byte occupati da una
O char c; variabile o un tipo.
- short s; -/ ~_
g long 1; |/ y
N printf("i e allocata all'indirizzo %p ed occupa %zu byte\n", &i, sizeof(i));
8 printf("c e allocata all'indirizzo %p ed occupa %zu byte\n", &c, sizeof(c));
o printf("s e allocata all'indirizzo %p ed occupa %zu byte\n", &s, sizeof(s));
© printf("1 & allocata all'indirizzo %p ed occupa %zu byte\n", &1, sizeof(1l));
} *Jlﬁ

allocata all'indirizzo Ox7ffed0@70258c ed occupa 4 byte

ie

c e allocata all'indirizzo 0x7ffed0@70258b ed occupa 1 byte
s e allocata all'indirizzo Ox7ffed@702588 ed occupa 2 byte
1 & allocata all'indirizzo Ox7ffed0702580 ed occupa 8 byte

GYBER
* CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Allocazione memoria (2)

o K

1 e allocata all'indirizzo Ox7ffed@70258c ed occupa 4 byte
c & allocata all'indirizzo Ox7ffed@70258b ed occupa 1 byte
s e allocata all'indirizzo 0x7ffed0702588 ed occupa 2 byte
1 & allocata all'indirizzo Ox7ffed0702580 ed occupa 8 byte
1 S C i
inutilizzato
Ox7ffed0702580

CYBER
s CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Allocazione memoria (3)

T
e Visto che stiamo lavorando con una CPU a 64 bit, puo essere

conveniente pensare la memoria divisa a gruppi di 8 byte (64 bit)

]
I 1

C

Ox7ffed0702580 1
Ox7ffed0702580
0x7ffed0702588
Ox7ffed0702590 S Cc
E\H(,%EEENGE.IT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Allocazione memoria (4)

e Gliindirizzi possono cambiare ad ogni esecuzione:
— Ma la disposizione relative tra di loro € costante

amato@banzai:~$./allocazionel

1 é allocata all'indirizzo 0x7ffc9687648c ed occupa 4 byte
c € allocata all'indirizzo Ox7ffc9687648b ed occupa 1 byte
s e allocata all'indirizzo 0x7ffc96876488 ed occupa 2 byte
1 € allocata all'indirizzo Ox7ffc96876480 ed occupa 8 byte
amato@banzai:~$./allocazionel

1 e allocata all'indirizzo 0x7ffef392066c ed occupa 4 byte
c € allocata all'indirizzo Ox7ffef392066b ed occupa 1 byte
s e allocata all'indirizzo Ox7ffef3920668 ed occupa 2 byte
1 & allocata all'indirizzo Ox7ffef3920660 ed occupa 8 byte
amato@banzai:~$./allocazionel

i é allocata all'indirizzo Ox7ffe5a9567dc ed occupa 4 byte
c € allocata all'indirizzo Ox7ffe5a9567db ed occupa 1 byte
s € allocata all'indirizzo Ox7ffe5a9567d8 ed occupa 2 byte
L € allocata all'indirizzo 0x7ffe5a9567d0 ed occupa 8 byte

GYBER T
* CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025 v

Allocazione memoria (5)
T

o Tuttavia, alcune opzioni del compilatore possono anche cambiare la
distanza tra gli indirizzi.

— Ad esempio, con I'opzione -0 del compilatore che serve ad ottimizzare |l
codice generato.

e« Compilazione standard

i e allocata all'indirizzo Ox7ffed070258c ed occupa 4 byte

c & allocata all'indirizzo Ox7ffed0@70258b ed occupa 1 byte

s e allocata all'indirizzo 0x7ffed0702588 ed occupa 2 byte

1 € allocata all'indirizzo 0x7ffed0702580 ed occupa 8 byte

° -

Comp||a2|0ne con 02 i e allocata all'indirizzo Ox7fffall1375d4 ed occupa 4 byte

c e allocata all'indirizzo Ox7fffall1375d1 ed occupa 1 byte

s e allocata all'indirizzo 0x7fffal1375d2 ed occupa 2 byte

1L e allocata all'indirizzo 0x7fffal11375d8 ed occupa 8 byte
== CYBER UiA
=F CHALLENGEIT . N 7

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Allineamento dati
T

e |l compilatore puo introdurre spazio non usato (padding)

— In generale, per questioni di efficienze € normale che un dato lungo n
byte inizi ad una locazione divisibile per n

#include <stdio.h> | 11: ex7ffeebf43a08
%) . . S c: Ox7ffe6bf43a07
. void main() { - .
QB long 11: L 12: ox7ffe6bf439f8
g char c; X
‘N long 12;
©
8 printf("11: %p\n", &11); \
ﬁg printf(" c: %p\n", &c); -
printf("12: %p\n", &12);
} 7 byte inutilizzati tra 12 e ¢
£= CYBER §Ty
=F CHALLENGEIT

. g
© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025 -/

Puntatori (1)

I T
[} . ° (‘

* |n Cesiste il tipo “puntatore a”, che si indica con un * prima del tipo
— 1int *: puntatore a intero

char *: puntatore a carattere

— void *: puntatore a un oggetto di tipo non specificato
 Un puntatore:

non contiene un valore

ma l'indirizzo della locazione di memoria dove il valore € memorizzato

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Puntatori (2)

I

* Se i éunavariabile intera (tipo int)

— &i (quello che fin'ora abbiamo chiamato semplicemente indirizzo di i)
effettivamente un puntatore ad i

* Se p € una variabile puntatore a intero (tipo int *)

— *p € il valore puntato dal puntatore p

* Gli operatori * e & sono uno I'inverso dell’altro

- &(xp) == p
- *x(&i) =1
== CYBER
=F CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Esempio: puntatori

v 5

#include <stdio.h>
)) 42
void main() { 42
int 1 = 42; Ox7ffdc842941c
int *p = &i; : 47
printf("%d\n", 1); ' Segmentation fault (core dumped)
printf("%d\n", *p);
printf("%p\n", p);

puntatori.c

p =5,
printf("%d\n", i);

p = O; ‘
printf("%d\n", *p);
3 - leggo dalla locazione 0,
ma non gradisce...

CYBER
s CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Input - scanf (1)
e
* Un altro modo per leggere da tastiera € la funzione scanf

— scanf (format, paraml, param?2

)
e La stringa format contiene la stringa che ci si aspetta in input, assieme
agli specificatori di conversione
— Sequenze di caratteri che iniziano con 7,
— Determinano che tipo di valore ci si aspetta dall’utente

* Ad esempio, %d indica un valore intero da memorizzare su 4 byte

— Le variabili param1, param?2, etc... contengono i puntatori alla zona di
memoria dove memorizzare i valori letti da tastiera

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Input - scanf (2)
I

~ Cisi aspetta due
numeri interi separati

#include <stdio.h> da uno spazio

void main() { =
int base, altezza;/;jW

printf("Immetfi/base e altezza di un rettangolo: ");

scanf("%d %d", &base, &altezza);
printf("Area: %d\n'", base * altezza);

} M

V

Immetti base e altezza di un rettangolo: 23 4

scanf.c

Area: 92
= CYBER
CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Aritmetica dei puntatori (1)

o ¥

e Somma di una numero ad un
puntatore (p)

— p+1non é lalocazione di memoria
immediatamente successiva a p

— Lalocazione puntata da p+1
dipende dal tipo di p

* Un variabile int occupa 4 byte
* Sepéditipo *int, p+1 non
punta alla locazione successiva a

p, ma all’intero successivo,
senza sovrapposizioni.

CYBER
= C

HALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025 *

Aritmetica dei puntatori (2)

R =

#include <stdio.h>

void main() {
int 1 = 42;

int *pl = &i;
int *p2 = pl + 1; dimensione int: 4
void "p3 = pi; ox7fffi1ifbcdc
gl v o e
o) printf("dimensione int: %lu\n", sizeof(int));) ox7fff111fbedd
-lg 2 n n / 42
c printf("%p\n", pl); 287292637
Ei printf("%p\n", p2);
printf("%p\n", p3);
printf("%p\n", p4);
printf("%d\n", *p1);
printf("%d\n", *p2);
}
L= CYBER %
=F CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025 N_o

Dimensioni dei tipi in C

e Le dimensioni dei tipi dipendono dalla CPU e dal sistema operativo.
Nei sistemi Linux a 64 bit:
int: 32 bit (4 byte)

— long: 64 bit (8 byte)

— void/ char: 8 bit (1 byte)
— puntatore: 64 bit (8 byte)

Nei sistemi Linux a 32 bit, come per i sistemi a 64 bit, ma:
— puntatore: 32 bit (4 byte)

In generale sizeof (tipo) in Cé la lunghezza in byte del tipo specificato

CYBER
2 C

HALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

18

Array e puntatori (1)

I IS

e Laritmetica dei puntatori viene usata spesso per accedere agli
elementi di un array.

#include <stdio.h>
O void main() { ~ Elemento 0: 10
o int a[] = { 10, 33, 87, -4 }; > Elemento 1: 33
'g int *p = &a[0]; - Di nuovo elemento 1: 15
S printf("Elemento 0: %d\n", *p);
% printf("Elemento 1: %d\n", *(p+1));
Q. “(p+1)= 15;
printf("Di nuovo elemento 1: %d\n", a[1]);
}
£= CYBER
=F CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Array e puntatori (2)
e [

e Array e puntatori in C sono praticamente la stessa cosa.

* Sep e un puntatore:
- *xp si puo scrivere come p [0]
- x(p+1) sipuo scrivere come p[1]
- In generale, * (p+n) si puo scrivere come p [n]

e Al contrario, se a € un array

— al[0] si puo scrivere come *a

— al[n] si puo scrivere come * (a+n)
'unica vera differenza € che una variabile array non si pudé modificare:

— a+=1 genera errore
- p+=1funziona

GYBER
= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Scorrere un array con i puntatori

I TS

Sintassi basata su array Sintassi basata su puntatori

#include <stdio.h> #include <stdio. h>

int somma_array(size_t len, int a[]) { int somma_array(int *start, int* end) {
int somma = 0; int somma = 0;
for (size_t i = 0; i1 < len; i++) { for (int *p = start; p < end; p++) {
somma += a[i]; somma += *p;
} © }
return somma; g return somma;
b of 1}
©
void main() { c | void main() {
int mioarray[5] = {10, 20, 30, 40, 50}, Ei int mioarray[5] = {10, 20, 30, 40, 50}%};
int s = somma_array(5, mioarray); int s = somma_array(mioarray, mioarray+5);
printf("La somma dell'array é: %d\n", s); printf('"La somma dell'array é: %d\n", s);
} 3

CYBER
s CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Big endian e little endian (1)
a6 0
* Un valore di tipo int occupa 4 byte: ma come sono disposti in
memoria ?

e Little endian:

— Standard sulle architetture x86 e x86-64

— Il byte meno significativo viene salvato negli indirizzi piu bassi
e Big endian:

— Il byte piu significativo viene salvato negli indirizzi piu bassi

e Questi nomi traggono origine dal romanzo “| viaggi di Gulliver

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

18

Big endian e little endian (2)

.|
e Esempio: 0xO078A258

— Little endian:
58 A2 78 | 00
- Big endian:
00 78 A2 | 58

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Big endian e little endian (3)
T

_ _ type casting: convince |l
#include <stdio.h> compilatore a trattare un

3 void main() { - puntatore a intero come fosse un
7 int v = 0; - puntatore a char
g char *p = (char*) &v;
© p[1] = 'A";
© printf("%d\n", v);
S }
)
> 16640
-V ' ??7?

GYBER *
* CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Accesso fuori dai margini (1)

o N
. :
)

In Java e Python, un tentativo di accedere ad un elemento inesistente
di un array o di una lista causa un errore

e |In C non si genera nessun errore!

— Si accede semplicemente a zone della memoria situate al di fuori
dall’array.

Qusto fenomeno € noto come buffer overflow, ed € probabilmente la
vulnerabilita pit comune nei programmi in C

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

18

Accesso fuori dai margini (2)

s ¥

#include <stdio.h>
void main() {
° int x = 0; I N
{g char s[] = "ciao"; :>
@] s[5] = 10; /
printf("%d\n", x);
}
= CYBER
= CHALLENGE.IT

© CINI - 2021, Gianluca Amato - 2025

10

Rel. 30.04.2025

Esercitazione
T P
Esercizio

Trovare I'input che fa rispondere “Ce I'hai fatta” al
programma mychallenge3

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 30.04.2025

Esercizi
T

Svolgere la challenge (fattibile)

SS 2.01 Digital billboard

(e una versione piu difficile di mychallenge3)

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 30.04.2025

https://ctf.cyberchallenge.it/challenges#challenge-108

Esercizi
e

Svolgere la challenge (media)

SS 1.04 Unbreakable AES

(e una versione piu difficile di mychallenge?2)

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 30.04.2025

https://ctf.cyberchallenge.it/challenges#challenge-105

Parametri su riga di comando (1)

s X
e Quando si lancia un programma, si possono passare parametri sulla
riga di comando

— Esempio: apt install default-jdk

programma parametro 1 parametro 2

* | parametri argc e argv della funzione main contengono il valore dei
parametri su riga di comando.

— In maniera analoga al parametro args del metodo main in Java
CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

18

Parametri su riga di comando (2)
s X
* argc contiene il numero di parametri

* argv e un array di puntatori a caratteri
— Ovvero, in C, un array di stringhe
— Ogni stringa € un parametro della riga di comando
* argv[0] €il nome del programma

* argv[1] e il primo parametro
e ecosivia

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Parametri su riga di comando (3)
e |

#include <stdio.h>
(&) void main(int argc, char *argv[]) {
%) for (int 1 = 0; 1 < argc; i++) {
g? printf("argv[%d]: %s\n", i, argv[i]);
}
}
\\ \\
\\\>\v
amato@atomino:~$./args Ciao parametro
argv[0]: ./args
argv[1]: Ciao
argv[2]: parametro
L= CYBER *
== CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

PARTE 3

T
Gestione della memoria

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Segmenti di memoria (1)
N

e Ogni processo ha della memoria allocata per Jish |~ Command line args
memorizzare dati e codice. e

e Questa memoria € divisa in aree specifiche:
— stack: per le variabili locali
— heap: per la memoria allocata dinamicamente

— bss: variabili globali non inizializzate

— data: variabili globali con valori iniziali

e e e 1 .. . hea
— rodata: dati inizializzati in sola lettura (stringhe) P
— area codice: per le istruzioni del programma bss
.data
£ = CYBER address 800y
=7 CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Esercitazione
T

e Usando readelf:

#include <stdio. h>

— disegnare una mappa di memoria S
dettagliata di questo programma; char “p = "Ciao mondo sola lettura”;

char s[] = "Ciao mondo";

— verificare la sezione in cui si int a[100];

trovano memorizzate le variabili

void main() {

memarea.c

int x;
del programma.
printf(" i: %p\n", &i);
printf(" p: %p\n", &p);
printf("*p: %p\n", p);
printf(" s: %p\n", &s);
printf(" a: %p\n", &a);
X

printf(" x: %p\n", &x);

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

| record di attivazione (1)

e Ogni volta che una funzione viene chiamata, viene creato un “record di
attivazione” nello stack

— Ogni record di attivazione contiene le variabili locali alla funzione, piu
altre informazioni ausiliarie

— Adifferenza di Python o Java, il record di attivazione contiene proprio i
valori delle variabili, non un riferimento allo heap

| record di attivazione si trovano in una area di memoria chiamata
stack che cresce verso indirizzi di memoria piu bassi

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

| record di attivazione (2)
T

Ox00606000606
variabili locali £2
#include <stdio.h> (a)
i f2(int a, int b) { info ausiliarie £2
int z = a + b; parametri £2
return z; (2, b)
o } variabili locali £1
%' int: f1(int x) { (v, k)
I int y =2 " xj info ausiliarie £1
n ﬁ ig:ulﬁn:kfz(x’ y)i parametri 1
3 ’ (x)
]) variabili locali main
void main() ¢ o 7o
int res = fi(a); info ausiliarie main
ﬁ printf("%d\n", res); parametri main
} (argc, argv)
OXFFffffff
CYBER
s CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Funzioni che restituiscono array ? (1)
e |

o Attenzione

— una funzione non deve restituire puntatori a dati presenti nello stack
— quando la funzione termina questi dati potrebbero non esistere piu!

#include <stdio.h> 'a”aY POAlEE
) memorizzato nello
int *unit_point() { = - stack
int point[2] = { 1, 1 }, *
return point; pm—) .
} ~ Potrebbe funzionare o generare

“segmentation fault”

stack2.c

void main() {
int *point = unit_point();
printf("%d %d\n", point[0], p01nt[1]),

CYBER s
CHALI—ENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025 w

Funzioni che restituiscono array ? (2)
e

e Per questo, di solito in C le funzioni non restituiscono array

— Prendono invece come parametro l'array su cui devono operare

#include <stdio. h>

void unit_point(int point[]) {
point[0] = 1;
o point[1] = 1;
TH
X
Q
S void main() {
« int point[2];
unit_point(point);
printf("%d %d\n", point[0], point[1]),
3
== CYBER A
=5 CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025 N ¢

Allocazione dinamica (1)

<

e Ma perché in Java e Python non c'é problema a restituire un array (
simile)?

def unit_point():

point = [1, 1]
return point
return po ;

}
void main() {

point = unit_point()
1nt “poi

print(point[0], point][

point[1]);

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Allocazione dinamica (2)

e X
e Perché in Java e Python:

— array e simili non sono creati nello stack ma nell’heap
— non subiscono la sorte del record di attivazione

— in Java l'operatore new indica che stiamo allocando qualcosa nell’heap
e Si puo allocare memoria nell’heap in C ?

— Si, con la funzione malloc (e similari)

— void *malloc(size_t size)

Riserva una quantita di memoria pari a size byte, e restituisce il puntatore
a questa zona di memoria

CYBER

= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

18

Allocazione dinamica (3)

#include <stdio.h> J importa le funzioni di |
#include <stdlib.h> ——— allocazione della memoria
int *unit_point() {
int *point = malloc(z * 51zeof(1nt)),
&) point[0] =
S point[1] = n _— —
=) return po”‘t; - alloca memoria sufficiente
S per 2 interi
void main() {
int *point = unit_point();
printf("%d %d\n", point[0], point[1]);
3 -
la memoria allocata da \
malloc € sempre valida
£= CYBER
= C

HALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025 \ﬁ

Liberare la memoria allocata (1)
e X
e Ma chilibera la memoria allocata per un dato che non serve piu ?
— In Java e Python ci pensa una componente dell’interprete chiamato
“garbage collector”

e In Cil garbage collector non esiste

Tutta la memoria allocata con malloc va liberata con la funzione free
— Altrimenti rimane in vita fino al termine del programma

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

18

Liberare la memoria allocata (2)
T |

#include <stdlib.h> SIZE = 2000000
#include <stdio.h> count = 0
#define SIZE 2000000 é while True:
. .) count += 1
void main() { g print("count:", count)
_ B 1 = [0] * SIZE
) int count = 0;
@ while (1) {
< count += 1;
Y= printf("count: %d\n", count);
int *p = malloc(SIZE * sizeof(int));)
for (size_t i = 0; i1 < SIZE; i++) {
p[i] = ©O; continua I'esecuzione per
sempre
¥
by

prima o poi viene ucciso dal
sistema operativo

= CYBER
CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Liberare la memoria allocata (3)
N

#::anlude <stdl_ib.h> SIZE = 2000000
#include <stdio.h> count = 0
#define SIZE 2000000 é while True:
. . Iob) count += 1
void main() { <5 print("count:", count)
_ B 1 = [0] * SIZE
&) int count = 0;
o while (1) {
% count += 1;
&= printf("count: %d\n", count);
int *p = malloc(SIZE * sizeof(int)); —
for (size_t i = 0; i1 < SIZE; i++) {
p[i] = ©O; continua I'esecuzione per
3 sempre
free(p);
) :
3
aggiungere free(p) per
risolvere il problema
CYBER
CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

Liberare la memoria allocata (4)

B

e La cosa pero non e sempre semplice:
Quando deallocare la memoria ?

— Se si dealloca quando ancora la si sta usando, € un problema
— Se si dealloca due volte, € un problema

#include <stdlib.h>
(&) void main() {
™ int *p = malloc(sizeof(int)); : ' free(): double free detected in tcache 2
8 free(p); 7 Aborted (core dumped)
= free(p);
}
£E= CYBER W
= CHALLENGEIT

H ‘Va i -
© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025 \ I/

Esercizi
T

Svolgere la challenge (difficile)

SS 1.03 Flag Checker

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 30.04.2025

https://ctf.cyberchallenge.it/challenges#challenge-104

Esercizi
T |

Svolgere la challenge (difficile)

SS 1.06 pacman

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 30.04.2025

https://ctf.cyberchallenge.it/challenges#challenge-107

Esercizi
s
Svolgere la challenge (molto difficile)

SS 1.05 morph

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 30.04.2025

https://ctf.cyberchallenge.it/challenges#challenge-106

Gianluca Amato

Universita di Chieti-Pescara

~ £ = CYBER
Software Security 03 == CHALLENGEIT

CYBERSECURITY
Programmazione in C

'\ NATIONAL
ani:+ L ABORATORY

FINE https://cybersecnatlab.it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

