
© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

Software Security 03

Programmazione in C

Software Security 03

Programmazione in C

Gianluca Amato
Università di Chieti-Pescara

https://cybersecnatlab.it

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

2

License & Disclaimer

This presentation is licensed under the
Creative Commons BY-NC License

To view a copy of the license, visit:

http://creativecommons.org/licenses/by-nc/3.0/legalcode

 We disclaim any warranties or representations
as to the accuracy or completeness of this
material.

 Materials are provided “as is” without
warranty of any kind, either express or
implied, including without limitation,
warranties of merchantability, fitness for a
particular purpose, and non-infringement.

 Under no circumstances shall we be liable for
any loss, damage, liability or expense incurred
or suffered which is claimed to have resulted
from use of this material.

License Information Disclaimer

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

3

PARTE 1

Il linguaggio C

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

4

Il linguaggio C

● Il C è un linguaggio di programmazione nato negli anni ‘70
– per la scrittura di software di sistema, fino ad allora sempre scritti in assembly

● Privilegia:
– Efficienza del codice compilato
– Compattezza del codice sorgente
– Controllo totale della macchina

● A scapito di:
– Facilità di utilizzo

● sintassi poco amichevole
● necessità di gestire in maniera manuale la memoria
● libreria standard minimalista

– Portabilità
● molti aspetti non sono completamente definiti dal linguaggio

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

5

C e Java

● A livello elementare, si può pensare a C come Java senza le classi.
– I tipi “primitivi” di C e Java sono simili: int, short, char, float, …

– La sintassi delle istruzioni (while, for, if, …) è simile.
– Le funzioni C corrispondono ai metodi statici di Java.
– Si usano le parentesi graffe per delimitare i blocchi come in Java.

– L’esecuzione parte dalla funzione main.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

6

Esempio: Java vs C

Java C

// importa le funzioni standard di input/output (printf)
#include <stdio.h>

// calcola la somma dei numeri da "a" fino a "b"
int somma(int a, int b) {
 int somma = 0;
 for (int i = a; i <= b; i++) {
 somma += i;
 }
 return somma;
}

void main(int argc, char *argv[]) {
 int res = somma(1, 10);
 printf("Somma: %d\n", res);
}

class Somma {

 // calcola la somma dei numeri da "a" fino a "b"
 public static int somma(int a, int b) {
 int somma = 0;
 for (int i = a; i <= b; i++) {
 somma += i;
 }
 return somma;
 }

 public static void main(String[] args) {
 int res = somma(1, 10);
 System.out.println("Somma: " + res);
 }
}

S
om

m
a.

ja
va

S
om

m
a.

ja
va

so
m

m
a.

c
so

m
m

a.
c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

7

Esempio: Python vs C

Python C

// importa le funzioni standard di input/output (printf)
#include <stdio.h>

// calcola la somma dei numeri da "a" fino a "b"
int somma(int a, int b) {
 int somma = 0;
 for (int i = a; i <= b; i++) {
 somma += i;
 }
 return somma;
}

void main(int argc, char *argv[]) {
 int res = somma(1, 10);
 printf("Somma: %d\n", res);
}

calcola la somma dei numeri da "a" fino a "b"
def somma(a, b):
 somma = 0
 for i in range(a, b+1):
 somma += i
 return somma

res = somma(1, 10)
print("Somma:", res)

so
m

m
a.

py
so

m
m

a.
py

so
m

m
a.

c
so

m
m

a.
c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

8

Differenze tra C e Java (e Python)

● Direttive del preprocessore
● Input e output
● Array
● Stringhe
● Puntatori
● Gestione della memoria

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

9

Le direttive

● Le direttive C sono delle speciali istruzioni che iniziano con #
● Non sono vere istruzioni C:

– vengono prese in considerazione durante la fase di pre-elaborazione;
– spariscono dal codice prima che venga effettivamente compilato.

● Vi ricordo che è possibile interrompere il compilatore alla fase di pre-
elaborazione per vederne il risultato:
– gcc -E nomefile.c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

10

La direttiva #include

● #include <file.h>
– Include il file indicato all’interno del file

corrente.
– In pratica: serve ad importare le funzioni

di libreria, in maniera analoga
all’istruzione import di Java e Python.

● stdio.h: funzioni di input/output
● string.h: funzioni per le stringhe
● stdlib.h: funzioni per l’allocazione

della memoria, conversioni di tipo, …

#include <stdio.h>

void main() {
 puts("Hello world!");
}

Importa funzioni di
input/output (puts)

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

11

La direttiva #define

● #define NOME VALORE
– Definisce una macro.
– Da ora in poi tutte le volte che

nel programma compare NOME,
esso verrà rimpiazzato da
VALORE.

– Non è una variabile, è solo una
sostituzione sintattica.

#include <stdio.h>

#define MESSAGE "Hello world!"

void main() {
 puts(MESSAGE);
}

MESSAGE diventa
equivalente a

“Hello world!”

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

12

Output – puts

● La funzione per l’output più semplice è puts:
– puts(s): manda in output la stringa s

● Esempio:
#include <stdio.h>

#define MESSAGE "Hello world!"

void main() {
 puts(MESSAGE);
}

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

13

Output – printf (1)

● La funzione per l’output più versatile e usata è printf
– printf(format, param1, param2, …)

● La stringa format contiene la stringa da stampare mischiata con alcuni
specificatori di conversione:
– Sequenze di caratteri che iniziano con %
– Determinano come interpretare i parametri param1, param2, …

– Ad esempio, %d indica un parametro di tipo intero

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

14

Output – printf (2)

42 - 2a
42 - pippo
42 - fc8700d
Segmentation fault (core dumped)

#include <stdio.h>

void main() {
 printf("%d - %x\n", 42, 42);
 printf("%d - %s\n", 42, "pippo");
 printf("%d - %x\n", 42, "pippo");
 printf("%d - %s\n", 42, 42);
}

intero in
esadecimale

stringa lo specificatore di conversione dice
che passo una stringa, ma in realtà

passo un numero

pr
in

tf.
c

pr
in

tf.
c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

15

Il manuale delle funzioni della libreria C

● Potete visualizzare la documentazione di una funzione C dalla shell di

Linux con il comando man:
– man puts
– Per alcune funzioni, come printf, esiste una comando della shell con lo

stesso nome. In tal caso usare il comando:
● man 3 printf
● il 3 chiarisce che siamo interessati alla sezione 3 del manuale
● la sezione 3 è quella sulle funzioni della libreria C

● In alternativa: https://linux.die.net/man/

https://linux.die.net/man/

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

16

Gli array (1)

● Gli array in C sono simili a quelli Java ma:
– In Java, se a è un array, a.length è la sua lunghezza
– In C non esiste un modo per scoprire la lunghezza di un array

● Non esattamente vero con l’introduzione dei “variable length array”, ma noi
non li utilizzeremo.

● In Python gli array non si usano:
– Possiamo pensare agli array C come le liste Python
– Come in Java, non possiamo conoscere la lunghezza di un array
– Tutti gli elementi di un array devono essere dello stesso tipo

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

17

Gli array (2)

#include <stdio.h>

int somma_array(size_t len, int a[]) {
 int somma = 0;
 for (size_t i = 0; i < len; i++) {
 somma += a[i];
 }
 return somma;
}

void main() {
 int mioarray[5] = {10, 20, 30, 40, 50};
 int s = somma_array(5, mioarray);
 printf("La somma dell'array è: %d\n", s);
}

size_t è il tipo da usare per indici
e lunghezze di array

Funzione che calcola la somma degli
elementi di un array a. Notare che

devo passare separatamente come
parametro anche la lunghezza

dell’array.

ar
ra

y.
c

ar
ra

y.
c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

18

Passaggio di parametri (1)

● In generale in C il passaggio dei parametri è per valore:
– Se passo ad una funzione un valore di tipo int, in realtà passo una copia

di quel valore.
– Le modifiche alla copia non si riflettono all’originale.

● L’unica eccezione è se passo un array ad una funzione:
– In questo caso, passo il suo indirizzo (passaggio per riferimento).
– Come avviene in Python per tutti i tipi.
– O come avviene in Java per tutti i tipi non primitivi.

● Modifiche all’array nella funzione si riflettono sul chiamante.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

19

Passaggio di parametri (2)

#include <stdio.h>

void change(size_t len, int a[]) {
 for (size_t i = 0; i < len; i++) {
 a[i] = 0;
 }
 len = 999;
}

void main() {
 size_t l = 5;
 int mioarray[5] = {10, 20, 30, 40, 50};
 change(l, mioarray);
 printf("l: %zu v: %d\n", l, mioarray[0]);
}

l non viene
modificato, ma
mioarray sì

zu è il codice da
usare per le variabili

di tipo size_t

ar
ra

y2
.c

ar
ra

y2
.c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

20

Stringhe

● In C non esiste un vero tipo per le stringhe.
● Le stringhe vengono implementate come array di byte che terminano

con il byte zero.
– La corrispondenza tra byte e caratteri stampabili dipende dal set di

caratteri in uso nel sistema (ASCII, UTF-8, etc...)
– Quando si manipolano le stringhe bisogna stare attenti alla dimensione

massima.
– Vedremo quanti problemi creerà questo fatto.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

21

Input – fgets (1)

● La funzione più semplice (tra quelle sicure) per l’input è fgets.
– fgets(str, len, stdin)

● legge una riga, e mette il risultano nell’array str
● la lunghezza massima della stringa è len-1
● in caratteri in eccesso vengono ignorati
● l’eventuale carattere di andata a capo finale diventa parte di str
● stdin denota lo standard input (normalmente la tastiera): va specificato

perché fgets può essere usata anche per leggere da un file.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

22

Input – fgets (2)

#include <stdio.h>

#define SIZE 30

void main() {
 char nome[SIZE];
 printf("Inserisci il nome: ");
 fgets(nome, SIZE, stdin);
 printf("Ciao %s\n", nome);
}

Inserisci il nome: Gianluca
Ciao Gianluca

Non si vede nella slide, ma c’è una
riga vuota perché vengono stampati

due caratteri di andata a capo: quello
digitato dall’utente e che si trova in

nome, e il \n di printf.

Nelle slide, metto in
grassetto quanto digitato

dall’utente

fg
et

s.
c

fg
et

s.
c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

23

Input – fgets (3)

#include <stdio.h>

#define SIZE 30

void main() {
 char nome[10];
 printf("Inserisci il nome: ");
 fgets(nome, SIZE, stdin);
 printf("Ciao %s\n", nome);
}

Inserisci il nome: Questo nome è probabilmente troppo lungo
Ciao Questo nome è probabilmente
Segmentation fault (core dumped)

● Se l’array destinazione della stringa è troppo piccola… c’è una
vulnerabilità.

dimensione dell’array nome
ridotto a soli 10 caratteri

fg
et

s2
.c

fg
et

s2
.c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

24

Input e conversioni di tipo

● Se si deve leggere in input un numero, si può leggere una stringa e poi
convertirla in numero.

#include <stdio.h>
#include <stdlib.h>

#define SIZE 30

void main() {
 char buffer[SIZE];

 printf("Immetti lato di un quadrato: ");
 fgets(buffer, 30, stdin);
 int lato = atoi(buffer);

 printf("Area: %d\n", lato * lato);
}

per la funzione atoi

atoi restituisce l’intero
rappresentato nella

stringa buffer

Immetti lato di un quadrato: 20
Area: 400

fg
et

s3
.c

fg
et

s3
.c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

25

Esercitazione

Esercizio

Trovare la password per il programma mychallenge2

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

26

PARTE 2

Puntatori e allocazione dati

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

27

Utilizzo della memoria (1)

● La maggior parte dei linguaggi di programmazione consentono al
programmatore di utilizzare tipi di dati senza preoccuparsi di come
sono rappresentati in memoria.

● Allo stesso modo, i programmatori ignorano dove i dati si trovano in
memoria (in gergo più tecnico, si parla di allocazione dei dati)
– I compilatori prendono queste decisioni di concerto col sistema

operativo.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

28

Utilizzo della memoria (2)

● In alcuni linguaggi, come il C, l’utilizzo della memoria è controllabile
dal programmatore.
– Si possono allocare e deallocare zone di memoria in maniera manuale.
– Si può scoprire dove risiede in memoria un certa variabile.
– Si può manipolare liberamente il contenuto della memoria.

● In C, se x è una variabile, &x è l’indirizzo nella memoria dove x è
memorizzato
– Il primo degli indirizzi, se x richiede più di un byte

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

29

Allocazione memoria (1)

#include <stdio.h>

void main() {
 int i;
 char c;
 short s;
 long l;

 printf("i è allocata all'indirizzo %p ed occupa %zu byte\n", &i, sizeof(i));
 printf("c è allocata all'indirizzo %p ed occupa %zu byte\n", &c, sizeof(c));
 printf("s è allocata all'indirizzo %p ed occupa %zu byte\n", &s, sizeof(s));
 printf("l è allocata all'indirizzo %p ed occupa %zu byte\n", &l, sizeof(l));
}

i è allocata all'indirizzo 0x7ffed070258c ed occupa 4 byte
c è allocata all'indirizzo 0x7ffed070258b ed occupa 1 byte
s è allocata all'indirizzo 0x7ffed0702588 ed occupa 2 byte
l è allocata all'indirizzo 0x7ffed0702580 ed occupa 8 byte

sizeof restituisce la quantità
di byte occupati da una

variabile o un tipo.

%p è lo specificatore per gli
indirizzi di memoria

al
lo

ca
zi

on
e1

.c
al

lo
ca

zi
on

e1
.c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

30

Allocazione memoria (2)

i è allocata all'indirizzo 0x7ffed070258c ed occupa 4 byte
c è allocata all'indirizzo 0x7ffed070258b ed occupa 1 byte
s è allocata all'indirizzo 0x7ffed0702588 ed occupa 2 byte
l è allocata all'indirizzo 0x7ffed0702580 ed occupa 8 byte

s c il

0x7ffed0702580

inutilizzato

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

31

Allocazione memoria (3)

● Visto che stiamo lavorando con una CPU a 64 bit, può essere
conveniente pensare la memoria divisa a gruppi di 8 byte (64 bit)

s c il

0x7ffed0702580 l

s c i

0x7ffed0702580

0x7ffed0702588

0x7ffed0702590

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

32

Allocazione memoria (4)

● Gli indirizzi possono cambiare ad ogni esecuzione:
– Ma la disposizione relative tra di loro è costante

amato@banzai:~$./allocazione1
i è allocata all'indirizzo 0x7ffc9687648c ed occupa 4 byte
c è allocata all'indirizzo 0x7ffc9687648b ed occupa 1 byte
s è allocata all'indirizzo 0x7ffc96876488 ed occupa 2 byte
l è allocata all'indirizzo 0x7ffc96876480 ed occupa 8 byte
amato@banzai:~$./allocazione1
i è allocata all'indirizzo 0x7ffef392066c ed occupa 4 byte
c è allocata all'indirizzo 0x7ffef392066b ed occupa 1 byte
s è allocata all'indirizzo 0x7ffef3920668 ed occupa 2 byte
l è allocata all'indirizzo 0x7ffef3920660 ed occupa 8 byte
amato@banzai:~$./allocazione1
i è allocata all'indirizzo 0x7ffe5a9567dc ed occupa 4 byte
c è allocata all'indirizzo 0x7ffe5a9567db ed occupa 1 byte
s è allocata all'indirizzo 0x7ffe5a9567d8 ed occupa 2 byte
l è allocata all'indirizzo 0x7ffe5a9567d0 ed occupa 8 byte

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

33

Allocazione memoria (5)

● Tuttavia, alcune opzioni del compilatore possono anche cambiare la
distanza tra gli indirizzi.
– Ad esempio, con l’opzione -O del compilatore che serve ad ottimizzare il

codice generato.
● Compilazione standard

● Compilazione con -O2

i è allocata all'indirizzo 0x7ffed070258c ed occupa 4 byte
c è allocata all'indirizzo 0x7ffed070258b ed occupa 1 byte
s è allocata all'indirizzo 0x7ffed0702588 ed occupa 2 byte
l è allocata all'indirizzo 0x7ffed0702580 ed occupa 8 byte

i è allocata all'indirizzo 0x7fffa11375d4 ed occupa 4 byte
c è allocata all'indirizzo 0x7fffa11375d1 ed occupa 1 byte
s è allocata all'indirizzo 0x7fffa11375d2 ed occupa 2 byte
l è allocata all'indirizzo 0x7fffa11375d8 ed occupa 8 byte

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

34

Allineamento dati

● Il compilatore può introdurre spazio non usato (padding)
– In generale, per questioni di efficienze è normale che un dato lungo n

byte inizi ad una locazione divisibile per n

#include <stdio.h>

void main() {
 long l1;
 char c;
 long l2;

 printf("l1: %p\n", &l1);
 printf(" c: %p\n", &c);
 printf("l2: %p\n", &l2);
}

l1: 0x7ffe6bf43a08
 c: 0x7ffe6bf43a07
l2: 0x7ffe6bf439f8

 7 byte inutilizzati tra l2 e c

al
lo

ca
zi

on
e2

.c
al

lo
ca

zi
on

e2
.c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

35

Puntatori (1)

● In C esiste il tipo “puntatore a”, che si indica con un * prima del tipo
– int *: puntatore a intero

– char *: puntatore a carattere

– void *: puntatore a un oggetto di tipo non specificato
● Un puntatore:

– non contiene un valore
– ma l’indirizzo della locazione di memoria dove il valore è memorizzato.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

36

Puntatori (2)

● Se i è una variabile intera (tipo int)
– &i (quello che fin’ora abbiamo chiamato semplicemente indirizzo di i) è

effettivamente un puntatore ad i
● Se p è una variabile puntatore a intero (tipo int *)

– *p è il valore puntato dal puntatore p.
● Gli operatori * e & sono uno l’inverso dell’altro:

– &(*p) == p
– *(&i) == i

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

37

Esempio: puntatori

42
42
0x7ffdc842941c
47
Segmentation fault (core dumped)

leggo dalla locazione 0,
ma non gradisce...

#include <stdio.h>

void main() {
 int i = 42;
 int *p = &i;
 printf("%d\n", i);
 printf("%d\n", *p);
 printf("%p\n", p);

 *p += 5;
 printf("%d\n", i);

 p = 0;
 printf("%d\n", *p);
}

pu
nt

at
or

i.c
pu

nt
at

or
i.c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

38

Input – scanf (1)

● Un altro modo per leggere da tastiera è la funzione scanf:
– scanf(format, param1, param2, …)

● La stringa format contiene la stringa che ci si aspetta in input, assieme
agli specificatori di conversione:
– Sequenze di caratteri che iniziano con %
– Determinano che tipo di valore ci si aspetta dall’utente

● Ad esempio, %d indica un valore intero da memorizzare su 4 byte

– Le variabili param1, param2, etc… contengono i puntatori alla zona di
memoria dove memorizzare i valori letti da tastiera

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

39

Input – scanf (2)

Immetti base e altezza di un rettangolo: 23 4
Area: 92

Ci si aspetta due
numeri interi separati

da uno spazio#include <stdio.h>

void main() {
 int base, altezza;

 printf("Immetti base e altezza di un rettangolo: ");
 scanf("%d %d", &base, &altezza);
 printf("Area: %d\n", base * altezza);
}

sc
an

f.c
sc

an
f.c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

40

● Somma di una numero ad un
puntatore (p)
– p+1 non è la locazione di memoria

immediatamente successiva a p
– La locazione puntata da p+1

dipende dal tipo di p
● Un variabile int occupa 4 byte
● Se p è di tipo *int, p+1 non

punta alla locazione successiva a
p, ma all’intero successivo,
senza sovrapposizioni.

Aritmetica dei puntatori (1)

p

p+1
Int (4

 byte)

Int (4
 byte)

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

41

Aritmetica dei puntatori (2)

#include <stdio.h>

void main() {
 int i = 42;
 int *p1 = &i;
 int *p2 = p1 + 1;
 void *p3 = p1;
 void *p4 = p3 + 1;

 printf("dimensione int: %lu\n", sizeof(int));

 printf("%p\n", p1);
 printf("%p\n", p2);
 printf("%p\n", p3);
 printf("%p\n", p4);

 printf("%d\n", *p1);
 printf("%d\n", *p2);
}

dimensione int: 4
0x7fff111fbcdc
0x7fff111fbce0
0x7fff111fbcdc
0x7fff111fbcdd
42
287292637

pu
nt

at
or

i2
.c

pu
nt

at
or

i2
.c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

42

Dimensioni dei tipi in C

● Le dimensioni dei tipi dipendono dalla CPU e dal sistema operativo.
● Nei sistemi Linux a 64 bit:

– int: 32 bit (4 byte)
– long: 64 bit (8 byte)
– void / char: 8 bit (1 byte)
– puntatore: 64 bit (8 byte)

● Nei sistemi Linux a 32 bit, come per i sistemi a 64 bit, ma:
– puntatore: 32 bit (4 byte)

● In generale sizeof(tipo) in C è la lunghezza in byte del tipo specificato

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

43

Array e puntatori (1)

● L’aritmetica dei puntatori viene usata spesso per accedere agli
elementi di un array.

Elemento 0: 10
Elemento 1: 33
Di nuovo elemento 1: 15

#include <stdio.h>

void main() {
 int a[] = { 10, 33, 87, -4 };
 int *p = &a[0];

 printf("Elemento 0: %d\n", *p);
 printf("Elemento 1: %d\n", *(p+1));
 *(p+1)= 15;
 printf("Di nuovo elemento 1: %d\n", a[1]);
}

pu
nt

at
or

i3
.c

pu
nt

at
or

i3
.c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

44

Array e puntatori (2)

● Array e puntatori in C sono praticamente la stessa cosa.
● Se p è un puntatore:

– *p si può scrivere come p[0]
– *(p+1) si può scrivere come p[1]
– In generale, *(p+n) si può scrivere come p[n]

● Al contrario, se a è un array
– a[0] si può scrivere come *a
– a[n] si può scrivere come *(a+n)

● L’unica vera differenza è che una variabile array non si può modificare:
– a+=1 genera errore
– p+=1 funziona

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

45

Scorrere un array con i puntatori

#include <stdio.h>

int somma_array(int *start, int* end) {
 int somma = 0;
 for (int *p = start; p < end; p++) {
 somma += *p;
 }
 return somma;
}

void main() {
 int mioarray[5] = {10, 20, 30, 40, 50};
 int s = somma_array(mioarray, mioarray+5);
 printf("La somma dell'array è: %d\n", s);
}

#include <stdio.h>

int somma_array(size_t len, int a[]) {
 int somma = 0;
 for (size_t i = 0; i < len; i++) {
 somma += a[i];
 }
 return somma;
}

void main() {
 int mioarray[5] = {10, 20, 30, 40, 50};
 int s = somma_array(5, mioarray);
 printf("La somma dell'array è: %d\n", s);
}

Sintassi basata su array Sintassi basata su puntatori

pu
nt

at
or

i4
.c

pu
nt

at
or

i4
.c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

46

Big endian e little endian (1)

● Un valore di tipo int occupa 4 byte: ma come sono disposti in
memoria ?

● Little endian:
– Standard sulle architetture x86 e x86-64
– Il byte meno significativo viene salvato negli indirizzi più bassi

● Big endian:
– Il byte più significativo viene salvato negli indirizzi più bassi

● Questi nomi traggono origine dal romanzo “I viaggi di Gulliver” !

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

47

Big endian e little endian (2)

● Esempio: 0x0078A258
– Little endian:

– Big endian:

58 A2 78 00

00 78 A2 58

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

48

Big endian e little endian (3)

#include <stdio.h>

void main() {
 int v = 0;
 char *p = (char*) &v;
 p[1] = 'A';
 printf("%d\n", v);
}

type casting: convince il
compilatore a trattare un

puntatore a intero come fosse un
puntatore a char

16640
???

en
di

an
es

s.
c

en
di

an
es

s.
c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

49

Accesso fuori dai margini (1)

● In Java e Python, un tentativo di accedere ad un elemento inesistente
di un array o di una lista causa un errore.

● In C non si genera nessun errore!
– Si accede semplicemente a zone della memoria situate al di fuori

dall’array.
– Qusto fenomeno è noto come buffer overflow, ed è probabilmente la

vulnerabilità più comune nei programmi in C.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

50

Accesso fuori dai margini (2)

#include <stdio.h>

void main() {
 int x = 0;
 char s[] = "ciao";
 s[5] = 10;
 printf("%d\n", x);
}

10

oo
b.

c
oo

b.
c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

51

Esercitazione

Esercizio

Trovare l’input che fa rispondere “Ce l’hai fatta” al
programma mychallenge3

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

52

Esercizi

Svolgere la challenge (fattibile)

SS_2.01 Digital billboard

(è una versione più difficile di mychallenge3)

https://ctf.cyberchallenge.it/challenges#challenge-108

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

53

Esercizi

Svolgere la challenge (media)

SS_1.04 Unbreakable AES

(è una versione più difficile di mychallenge2)

https://ctf.cyberchallenge.it/challenges#challenge-105

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

54

Parametri su riga di comando (1)

● Quando si lancia un programma, si possono passare parametri sulla
riga di comando
– Esempio: apt install default-jdk

● I parametri argc e argv della funzione main contengono il valore dei
parametri su riga di comando.
– In maniera analoga al parametro args del metodo main in Java.

programma parametro 1 parametro 2

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

55

Parametri su riga di comando (2)

● argc contiene il numero di parametri

● argv è un array di puntatori a caratteri
– Ovvero, in C, un array di stringhe
– Ogni stringa è un parametro della riga di comando

● argv[0] è il nome del programma
● argv[1] è il primo parametro
● e così via

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

56

Parametri su riga di comando (3)

#include <stdio.h>

void main(int argc, char *argv[]) {
 for (int i = 0; i < argc; i++) {
 printf("argv[%d]: %s\n", i, argv[i]);
 }
}

amato@atomino:~$./args Ciao parametro
argv[0]: ./args
argv[1]: Ciao
argv[2]: parametro

ar
gs

.c
ar

gs
.c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

57

PARTE 3

Gestione della memoria

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

58

Segmenti di memoria (1)

● Ogni processo ha della memoria allocata per
memorizzare dati e codice.

● Questa memoria è divisa in aree specifiche:
– stack: per le variabili locali
– heap: per la memoria allocata dinamicamente
– bss: variabili globali non inizializzate
– data: variabili globali con valori iniziali
– rodata: dati inizializzati in sola lettura (stringhe)
– area codice: per le istruzioni del programma

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

59

Esercitazione

● Usando readelf:
– disegnare una mappa di memoria

dettagliata di questo programma;
– verificare la sezione in cui si

trovano memorizzate le variabili
del programma.

#include <stdio.h>

int i;
char *p = "Ciao mondo sola lettura";
char s[] = "Ciao mondo";
int a[100];

void main() {
 int x;

 printf(" i: %p\n", &i);
 printf(" p: %p\n", &p);
 printf("*p: %p\n", p);
 printf(" s: %p\n", &s);
 printf(" a: %p\n", &a);
 printf(" x: %p\n", &x);
}

m
em

ar
ea

.c
m

em
ar

ea
.c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

60

I record di attivazione (1)

● Ogni volta che una funzione viene chiamata, viene creato un “record di
attivazione” nello stack
– Ogni record di attivazione contiene le variabili locali alla funzione, più

altre informazioni ausiliarie
– A differenza di Python o Java, il record di attivazione contiene proprio i

valori delle variabili, non un riferimento allo heap.
● I record di attivazione si trovano in una area di memoria chiamata

stack che cresce verso indirizzi di memoria più bassi.

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

61

I record di attivazione (2)

#include <stdio.h>

int f2(int a, int b) {
 int z = a + b;
 return z;
}

int f1(int x) {
 int y = 2 * x;
 int k = f2(x, y);
 return k;
}

void main() {
 int a = 2;
 int res = f1(a);
 printf("%d\n", res);
}

parametri main
(argc, argv)

0x00000000

0xffffffff

info ausiliarie main

info ausiliarie f1

variabili locali main
(a, res)

parametri f1
(x)

info ausiliarie f2

variabili locali f1
(y, k)

parametri f2
(a, b)

variabili locali f2
(a)

st
ac

k.
c

st
ac

k.
c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

62

Funzioni che restituiscono array ? (1)

● Attenzione
– una funzione non deve restituire puntatori a dati presenti nello stack
– quando la funzione termina questi dati potrebbero non esistere più!

l’array point è
memorizzato nello

stack

#include <stdio.h>

int *unit_point() {
 int point[2] = { 1, 1 };
 return point;
}

void main() {
 int *point = unit_point();
 printf("%d %d\n", point[0], point[1]);
}

Potrebbe funzionare o generare
“segmentation fault”

st
ac

k2
.c

st
ac

k2
.c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

63

Funzioni che restituiscono array ? (2)

● Per questo, di solito in C le funzioni non restituiscono array
– Prendono invece come parametro l’array su cui devono operare

#include <stdio.h>

void unit_point(int point[]) {
 point[0] = 1;
 point[1] = 1;
}

void main() {
 int point[2];
 unit_point(point);
 printf("%d %d\n", point[0], point[1]);
}

st
ac

k3
.c

st
ac

k3
.c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

64

Allocazione dinamica (1)

● Ma perché in Java e Python non c’è problema a restituire un array (o
simile)?

#include <stdio.h>

int *unit_point() {
 int point[2] = { 1, 1 };
 return point;
}

void main() {
 int *point = unit_point();
 printf("%d %d\n", point[0], point[1]);
}

def unit_point():
 point = [1, 1]
 return point

point = unit_point()
print(point[0], point[1])

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

65

Allocazione dinamica (2)

● Perché in Java e Python:
– array e simili non sono creati nello stack ma nell’heap
– non subiscono la sorte del record di attivazione

– in Java l’operatore new indica che stiamo allocando qualcosa nell’heap
● Si può allocare memoria nell’heap in C ?

– Sì, con la funzione malloc (e similari)

– void *malloc(size_t size)
● Riserva una quantità di memoria pari a size byte, e restituisce il puntatore

a questa zona di memoria

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

66

Allocazione dinamica (3)

#include <stdio.h>
#include <stdlib.h>

int *unit_point() {
 int *point = malloc(2 * sizeof(int));
 point[0] = 1;
 point[1] = 1;
 return point;
}

void main() {
 int *point = unit_point();
 printf("%d %d\n", point[0], point[1]);
}

importa le funzioni di
allocazione della memoria

alloca memoria sufficiente
per 2 interi

la memoria allocata da
malloc è sempre valida

m
al

lo
c.

c
m

al
lo

c.
c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

67

Liberare la memoria allocata (1)

● Ma chi libera la memoria allocata per un dato che non serve più ?
– In Java e Python ci pensa una componente dell’interprete chiamato

“garbage collector”
● In C il garbage collector non esiste:

– Tutta la memoria allocata con malloc va liberata con la funzione free
– Altrimenti rimane in vita fino al termine del programma

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

68

Liberare la memoria allocata (2)

#include <stdlib.h>
#include <stdio.h>

#define SIZE 2000000

void main() {
{
 int count = 0;
 while (1) {
 count += 1;
 printf("count: %d\n", count);
 int *p = malloc(SIZE * sizeof(int));
 for (size_t i = 0; i < SIZE; i++) {
 p[i] = 0;
 }
 }
}

prima o poi viene ucciso dal
sistema operativo

SIZE = 2000000
count = 0

while True:
 count += 1
 print("count:",count)
 l = [0] * SIZE

continua l’esecuzione per
sempre

fr
ee

.c
fr

ee
.c

fr
ee

.p
y

fr
ee

.p
y

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

69

Liberare la memoria allocata (3)

#include <stdlib.h>
#include <stdio.h>

#define SIZE 2000000

void main() {
{
 int count = 0;
 while (1) {
 count += 1;
 printf("count: %d\n", count);
 int *p = malloc(SIZE * sizeof(int));
 for (size_t i = 0; i < SIZE; i++) {
 p[i] = 0;
 }
 free(p);
 }
}

SIZE = 2000000
count = 0

while True:
 count += 1
 print("count:",count)
 l = [0] * SIZE

continua l’esecuzione per
sempre

aggiungere free(p) per
risolvere il problema

fr
ee

2.
c

fr
ee

2.
c

fr
ee

.p
y

fr
ee

.p
y

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

70

Liberare la memoria allocata (4)

● La cosa però non è sempre semplice:
– Quando deallocare la memoria ?
– Se si dealloca quando ancora la si sta usando, è un problema
– Se si dealloca due volte, è un problema

#include <stdlib.h>

void main() {
 int *p = malloc(sizeof(int));
 free(p);
 free(p);
}

free(): double free detected in tcache 2
Aborted (core dumped)

fr
ee

3.
c

fr
ee

3.
c

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

71

Esercizi

Svolgere la challenge (difficile)

SS_1.03 Flag Checker

https://ctf.cyberchallenge.it/challenges#challenge-104

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

72

Esercizi

Svolgere la challenge (difficile)

SS_1.06 pacman

https://ctf.cyberchallenge.it/challenges#challenge-107

© CINI – 2021, Gianluca Amato – 2025 Rel. 30.04.2025

73

Esercizi

Svolgere la challenge (molto difficile)

SS_1.05 morph

https://ctf.cyberchallenge.it/challenges#challenge-106

Software Security 03

Programmazione in C

Software Security 03

Programmazione in C

Gianluca Amato
Università di Chieti-Pescara

https://cybersecnatlab.itFINE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

