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Il inguaggio C
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Il linguaggio C

o

Il C & un linguaggio di programmazione nato negli anni ‘70
— per la scrittura di software di sistema, fino ad allora sempre scritti in assembly
e Privilegia:
— Efficienza del codice compilato
— Compattezza del codice sorgente
— Controllo totale della macchina
e A scapito di:
— Facilita di utilizzo
e sintassi poco amichevole

e necessita di gestire in maniera manuale la memoria
 libreria standard minimalista

— Portabilita
« molti aspetti non sono completamente definiti dal linguaggio

CYBER
= CHALLENGEIT

18

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025



C e Java

s
o Alivello elementare, si pud pensare a C come Java senza le classi

— | tipi “primitivi” di C e Java sono simili: int, short, char, float

— La sintassi delle istruzioni (while, for, if

,...) € simile.
— Le funzioni C corrispondono ai metodi statici di Java

— Siusano le parentesi graffe per delimitare i blocchi come in Java
— L'esecuzione parte dalla funzione main
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Esempio: Java vs C
B

Java C

class Somma { // importa le funzioni standard di input/output (printf)
#include <stdio.h>

// calcola la somma dei numeri da "a" fino a "b"

public static int somma(int a, int b) { // calcola la somma dei numeri da "a" fino a "b"
< int somma = ©; _ int §o?ma(1nt ?r@}nt b) {
] for (int 1 = a; 1 <= b; i++) { ) int somma = ©; .
oy somma += i: / for (int i = a; i <= b; i++) {
g } ' g somma += 1i;
c return somma; = 3
o } o return somma;
n “ B}
public static void main(String[] args) { _ o .
int res = somma(l, 10); v01d_ma1n(1nt argc, char *argv[]) {
System.out.println("Somma: " + res); int res = somma(1, 10);
1 printf("Somma: %d\n", res);
} }

= CYBER
CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025




Esempio: Python vs C
N

Python C
# calcola la somma dei numeri da "a" fino a "b" // importa le funzioni standard di input/output (printf)
def somma(a, b): #include <stdio.h>

somma = 0

for i in range(a, b+1): // calcola la somma dei numeri da "a" fino a "b"

int somma(int a, int b) {
int somma = 0;
for (int 1 = a; i <= b; i++) {
somma += 1i;
}

return somma;

somma += 1
return somma

somma.py

res = somma(l, 10)
print("Somma:", res)

somma.c

}

void main(int argc, char *argv[]) {
int res = somma(l1, 10);
printf("Somma: %d\n", res);
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Differenze tra C e Java (e Python)

s ¥
e Direttive del preprocessore
[ J

Input e output
e Array
e Stringhe

Puntatori

e Gestione della memoria
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Le direttive

e Le direttive C sono delle speciali istruzioni che iniziano con #
e Non sono vere istruzioni C:

— vengono prese in considerazione durante la fase di pre-elaborazione

— spariscono dal codice prima che venga effettivamente compilato

e Viricordo che e possibile interrompere il compilatore alla fase di pre-
elaborazione per vederne il risultato

- gcc -E nomefile.c

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025

18



La direttiva #include

o ¥

* #include <f<le.h>

— Includeil file indicato all'interno del file
corrente.

Importa funzioni di
input/output (puts)

#include <stdio.h>

— In pratica: serve ad importare le funzioni
di libreria, in maniera analoga e TS wortd i)
all'istruzione import di Java e Python.
* stdio.h: funzioni di input/output
* string.h: funzioni per le stringhe

* stdlib.h: funzioni per 'allocazione
della memoria, conversioni di tipo, ...
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La direttiva #define

o

 #define NOME VALORE MESSAGE diventa
equivalente a

— Definisce una macro. _ "Hello world!"™
— Daorain poi tutte le volte che inelude <Std#,,,,/,/,’)

nel programma Compare NUME #define MESSAGE "Hello world!"

3 ri 1 void main() {
esso verra rimpiazzato da e NESASE) :
VALORE. }

— Non e una variabile, € solo una
sostituzione sintattica.
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Output - puts

TR
* Lafunzione per l'output piu semplice &€ puts

- puts(s) : mandain output la stringa s

e Esemplo:
#include <stdio.h>
#define MESSAGE "Hello world!"
void main() {
puts(MESSAGE) ;
}
CYBER
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Output - printf (1)
o
* Lafunzione per 'output piu versatile e usata € printf

- printf(format, paraml, param2, ..)

e La stringa format contiene la stringa da stampare mischiata con alcuni
specificatori di conversione:

— Sequenze di caratteri che iniziano con %,

— Determinano come interpretare i parametri parami, param2

— Ad esempio, %d indica un parametro di tipo intero
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Output - printf (2)

I =

intero in
esadecimale

#include <stdio. h>

_ 42 - 2a

_ _ = ~ 42 - pippo
o | void maln]gz {d \ ) : 42 - fc8700d
= printf("%d - %x\n", 42, 42); - -
_E printf("%d - %s\n", 42, "pippo"); Segmentation fault (core dumped)
Qo printf("%d z/%x\n”, 42, "pippo");

printf("%d - %s\n", 42, 42);
stringa lo specificatore di conversione dice

che passo una stringa, ma in realta
passo un numero
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Il manuale delle funzioni della libreria C

s N
. .

Potete visualizzare la documentazione di una funzione C dalla shell di
Linux con il comando man:

— man puts

— Per alcune funzioni, come printf, esiste una comando della shell con lo
stesso nome. In tal caso usare il comando

* man 3 printf

il 3 chiarisce che siamo interessati alla sezione 3 del manuale
la sezione 3 € quella sulle funzioni della libreria C

e In alternativa: https://linux.die.net/man/

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 30.04.2025


https://linux.die.net/man/

Gli array (1)

o X
e Gliarray in C sono simili a quelli Java ma:

— InJava, se a € un array, a.length € la sua lunghezza
— In C non esiste un modo per scoprire la lunghezza di un array
e Non esattamente vero con l'introduzione dei “variable length array”, ma noi
non li utilizzeremo.

e In Python gli array non si usano

— Possiamo pensare agli array C come le liste Python

— Come in Java, non possiamo conoscere la lunghezza di un array
— Tutti gli elementi di un array devono essere dello stesso tipo
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Gli array (2)
Ty

#include <stdio.h> /
J size_t e il tipo da usare per indici

int somma_array(size_t len, int a S .
v ‘i])i - e lunghezze di array

int somma = 0;
for (size t i = 0; 1 < len; i++) {

somma += a[i];

} R

return somma; N - -
© ~ |
G void main() { |

int mioarray[5] = {10, 20, 30, 40, 50}; Funzione che calcola la somma degli

int s = somma_array(s, mioarray); ~ elementi di un array a. Notare che

, printf("La somma dell'array e: %d\n", s); devo passare separatamente come
parametro anche la lunghezza
dell'array.
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Passaggio di parametri (1)

s

e In generalein C il passaggio dei parametri € per valore

— Se passo ad una funzione un valore di tipo int, in realta passo una copia
di quel valore.

— Le modifiche alla copia non si riflettono all’originale
. :

e |'unica eccezione & se passo un array ad una funzione

— In questo caso, passo il suo indirizzo (passaggio per riferimento)
— Come avviene in Python per tutti i tipi

— O come avviene in Java per tutti i tipi non primitivi.
 Modifiche all’array nella funzione si riflettono sul chiamante
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Passaggio di parametri (2)

BT

#include <stdio.h>

void change(size_t 1len, int a[]) {

for (size_t i = 0; i < len; i++) {”/ A
) a[i] = 0; 1 non viene
len = 999; / modificato, ma
ol 3 mioarray Si
Sl void main() {
© size_t 1 = 5; g
G int mioarray[5] = {10 20, 30, 40, 50};
change(1l, mioarray);
printf("Ll: %zu v: %d\n", 1, mioarray[0]);
zu € il codice da
usare per le variabili
di tipo size_t
Z= CYBER " "
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Stringhe
20
e In C non esiste un vero tipo per le stringhe

e Le stringhe vengono implementate come array di byte che terminano
con il byte zero.

— La corrispondenza tra byte e caratteri stampabili dipende dal set di
caratteri in uso nel sistema (ASCII, UTF-8, etc...)

— Quando si manipolano le stringhe bisogna stare attenti alla dimensione
massima.

— Vedremo quanti problemi creera questo fatto
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Input - fgets (1)

2 X

* La funzione piu semplice (tra quelle sicure) per I'input € fgets
- fgets(str,

len, stdin)

legge unariga, e mette il risultano nell’array str

la lunghezza massima della stringa € 1en-1

in caratteri in eccesso vengono ignorati

I’eventuale carattere di andata a capo finale diventa parte di str

* stdin denota lo standard input (normalmente la tastiera): va specificato
perché fgets puo essere usata anche per leggere da un file
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Input - fgets (2)

2 N

"~ Nelle slide, metto in
grassetto quanto digitato

#include <stdio. h>

dall’'utente
#define SIZE 30 \\\
(&) N
@ || void main() { Inserisci il nome: Gianluca
1B char nome[SIZE]; > Ciao Gianluca
= printf("Inserisci il nome: ");
fgets(nome, SIZE, stdin);
printf("Ciao %s\n", nome);
}
Non si vede nella slide, ma c’é una
riga vuota perché vengono stampati
due caratteri di andata a capo: quello
digitato dall’'utente e che si trova in
nome, € il \n di printf.
£= CYBER
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Input - fgets (3)

2

« Se l'array destinazione della stringa e troppo piccola... c’¢ una
vulnerabilita.

dimensione dell’array nome

ridotto a soli 10 caratteri
#include <stdio.h> N

o #define SIZE 30
O B void main() {
o) char nome[10];
= printf("Inserisci il nome: ");
fgets(nome, SIZE, stdin);
printf("Ciao %s\n", nome); Inserisci il nome: Questo nome e probabilmente troppo lungo
} Ciao Questo nome é probabilmente
Segmentation fault (core dumped)
£ CYBER 0
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Input e conversioni di tipo

2

e Se sideve leggere in input un numero, si puo leggere una stringa e poi
convertirla in numero.

#include <stdio.h> ‘ per la funzione atoi
#include <stdlib.h> ~—
fdefine SIZE 30  atoi restituisce l'intero
8 void main() { rappresentato nella
J%) char buffer[SIZE]; stringa buffer
(8]
D2 printf("Immetti lato di un quadrato: ");
fgets(buffer, 30, stdin);
int lato = atoi(buffer);
g Immetti lato di un quadrato: 20
printf("Area: %d\n", lato * lato); ~ Area: 400
L= CYBER -
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Esercitazione
s |
Esercizio

Trovare la password per il programma mychallenge?2
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PARTE 2

T
Puntatori e allocazione dati
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Utilizzo della memoria (1)

2 N

e La maggior parte dei linguaggi di programmazione consentono al

programmatore di utilizzare tipi di dati senza preoccuparsi di come
sono rappresentati in memoria

e Allo stesso modo, i programmatori ignorano dove i dati si trovano in
memoria (in gergo piu tecnico, si parla di allocazione dei dati)

— | compilatori prendono queste decisioni di concerto col sistema
operativo.
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Utilizzo della memoria (2)

28 8
)

e In alcunilinguaggi, come il C, l'utilizzo della memoria é controllabile
dal programmatore.

— Si possono allocare e deallocare zone di memoria in maniera manuale
— Si puo scoprire dove risiede in memoria un certa variabile

— Si puo manipolare liberamente il contenuto della memoria

In C, se x € una variabile, &x e I'indirizzo nella memoria dove x e
memorizzato

— Il primo degli indirizzi, se x richiede piu di un byte
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Allocazione memoria (1)

#include <stdio.h> ’p € lo specificatore per gli

void main() { indirizzi di memoria size.of restituisce_la guantita
int i; T di byte occupati da una
O char c; variabile o un tipo.
- short s; -/ ~_
g long 1; |/ y
N printf("i e allocata all'indirizzo %p ed occupa %zu byte\n", &i, sizeof(i));
8 printf("c e allocata all'indirizzo %p ed occupa %zu byte\n", &c, sizeof(c));
o printf("s e allocata all'indirizzo %p ed occupa %zu byte\n", &s, sizeof(s));
© printf("1 & allocata all'indirizzo %p ed occupa %zu byte\n", &1, sizeof(1l));
} *Jlﬁ

allocata all'indirizzo Ox7ffed0@70258c ed occupa 4 byte

ie

c e allocata all'indirizzo 0x7ffed0@70258b ed occupa 1 byte
s e allocata all'indirizzo Ox7ffed@702588 ed occupa 2 byte
1 & allocata all'indirizzo Ox7ffed0702580 ed occupa 8 byte

GYBER
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Allocazione memoria (2)

o K

1 e allocata all'indirizzo Ox7ffed@70258c ed occupa 4 byte
c & allocata all'indirizzo Ox7ffed@70258b ed occupa 1 byte
s e allocata all'indirizzo 0x7ffed0702588 ed occupa 2 byte
1 & allocata all'indirizzo Ox7ffed0702580 ed occupa 8 byte
1 S C i
inutilizzato
Ox7ffed0702580
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Allocazione memoria (3)

T
e Visto che stiamo lavorando con una CPU a 64 bit, puo essere

conveniente pensare la memoria divisa a gruppi di 8 byte (64 bit)

]
I 1

C

Ox7ffed0702580 1
Ox7ffed0702580
0x7ffed0702588
Ox7ffed0702590 S Cc
E\H(,%EEENGE.IT
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Allocazione memoria (4)

e Gliindirizzi possono cambiare ad ogni esecuzione:
— Ma la disposizione relative tra di loro € costante

amato@banzai:~$ ./allocazionel

1 é allocata all'indirizzo 0x7ffc9687648c ed occupa 4 byte
c € allocata all'indirizzo Ox7ffc9687648b ed occupa 1 byte
s e allocata all'indirizzo 0x7ffc96876488 ed occupa 2 byte
1 € allocata all'indirizzo Ox7ffc96876480 ed occupa 8 byte
amato@banzai:~$ ./allocazionel

1 e allocata all'indirizzo 0x7ffef392066c ed occupa 4 byte
c € allocata all'indirizzo Ox7ffef392066b ed occupa 1 byte
s e allocata all'indirizzo Ox7ffef3920668 ed occupa 2 byte
1 & allocata all'indirizzo Ox7ffef3920660 ed occupa 8 byte
amato@banzai:~$ ./allocazionel

i é allocata all'indirizzo Ox7ffe5a9567dc ed occupa 4 byte
c € allocata all'indirizzo Ox7ffe5a9567db ed occupa 1 byte
s € allocata all'indirizzo Ox7ffe5a9567d8 ed occupa 2 byte
L € allocata all'indirizzo 0x7ffe5a9567d0 ed occupa 8 byte
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Allocazione memoria (5)
T

o Tuttavia, alcune opzioni del compilatore possono anche cambiare la
distanza tra gli indirizzi.

— Ad esempio, con I'opzione -0 del compilatore che serve ad ottimizzare |l
codice generato.

e« Compilazione standard

i e allocata all'indirizzo Ox7ffed070258c ed occupa 4 byte

c & allocata all'indirizzo Ox7ffed0@70258b ed occupa 1 byte

s e allocata all'indirizzo 0x7ffed0702588 ed occupa 2 byte

1 € allocata all'indirizzo 0x7ffed0702580 ed occupa 8 byte

° -

Comp||a2|0ne con 02 i e allocata all'indirizzo Ox7fffall1375d4 ed occupa 4 byte

c e allocata all'indirizzo Ox7fffall1375d1 ed occupa 1 byte

s e allocata all'indirizzo 0x7fffal1375d2 ed occupa 2 byte

1L e allocata all'indirizzo 0x7fffal11375d8 ed occupa 8 byte
== CYBER UiA
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Allineamento dati
T

e |l compilatore puo introdurre spazio non usato (padding)

— In generale, per questioni di efficienze € normale che un dato lungo n
byte inizi ad una locazione divisibile per n

#include <stdio.h> | 11: ex7ffeebf43a08
%) . . S c: Ox7ffe6bf43a07
. void main() { - .
QB long 11: L 12: ox7ffe6bf439f8
g char c; X
‘N long 12;
©
8 printf("11: %p\n", &11); \
ﬁg printf(" c: %p\n", &c); -
printf("12: %p\n", &12);
} 7 byte inutilizzati tra 12 e ¢
£= CYBER §Ty
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Puntatori (1)

I T
[} . ° (‘

* |n Cesiste il tipo “puntatore a”, che si indica con un * prima del tipo
— 1int *: puntatore a intero

char *: puntatore a carattere

— void *: puntatore a un oggetto di tipo non specificato
 Un puntatore:

non contiene un valore

ma l'indirizzo della locazione di memoria dove il valore € memorizzato
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Puntatori (2)

I

* Se i éunavariabile intera (tipo int)

— &i (quello che fin'ora abbiamo chiamato semplicemente indirizzo di i)
effettivamente un puntatore ad i

* Se p € una variabile puntatore a intero (tipo int *)

— *p € il valore puntato dal puntatore p

* Gli operatori * e & sono uno I'inverso dell’altro

- &(xp) == p
- *x(&i) =1
== CYBER
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Esempio: puntatori

v 5

#include <stdio.h>
) ) 42
void main() { 42
int 1 = 42; Ox7ffdc842941c
int *p = &i; : 47
printf("%d\n", 1); ' Segmentation fault (core dumped)
printf("%d\n", *p);
printf("%p\n", p);

puntatori.c

p =5,
printf("%d\n", i);

p = O; ‘
printf("%d\n", *p);
3 - leggo dalla locazione 0,
ma non gradisce...

CYBER
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Input - scanf (1)
e
* Un altro modo per leggere da tastiera € la funzione scanf

— scanf (format, paraml, param?2

)
e La stringa format contiene la stringa che ci si aspetta in input, assieme
agli specificatori di conversione
— Sequenze di caratteri che iniziano con 7,
— Determinano che tipo di valore ci si aspetta dall’utente

* Ad esempio, %d indica un valore intero da memorizzare su 4 byte

— Le variabili param1, param?2, etc... contengono i puntatori alla zona di
memoria dove memorizzare i valori letti da tastiera
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Input - scanf (2)
I

~ Cisi aspetta due
numeri interi separati

#include <stdio.h> da uno spazio

void main() { =
int base, altezza;/;jW

printf("Immetfi/base e altezza di un rettangolo: ");

scanf("%d %d", &base, &altezza);
printf("Area: %d\n'", base * altezza);

} M

V

Immetti base e altezza di un rettangolo: 23 4

scanf.c

Area: 92
= CYBER
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Aritmetica dei puntatori (1)

o ¥

e Somma di una numero ad un
puntatore (p)

— p+1non é lalocazione di memoria
immediatamente successiva a p

— Lalocazione puntata da p+1
dipende dal tipo di p

* Un variabile int occupa 4 byte
* Sepéditipo *int, p+1 non
punta alla locazione successiva a

p, ma all’intero successivo,
senza sovrapposizioni.
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Aritmetica dei puntatori (2)

R =

#include <stdio.h>

void main() {
int 1 = 42;

int *pl = &i;
int *p2 = pl + 1; dimensione int: 4
void "p3 = pi; ox7fffi1ifbcdc
gl v o e
o) printf("dimensione int: %lu\n", sizeof(int)); ) ox7fff111fbedd
-lg 2 n n / 42
c printf("%p\n", pl); 287292637
Ei printf("%p\n", p2);
printf("%p\n", p3);
printf("%p\n", p4);
printf("%d\n", *p1);
printf("%d\n", *p2);
}
L= CYBER %
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Dimensioni dei tipi in C

e Le dimensioni dei tipi dipendono dalla CPU e dal sistema operativo.
Nei sistemi Linux a 64 bit:
int: 32 bit (4 byte)

— long: 64 bit (8 byte)

— void/ char: 8 bit (1 byte)
— puntatore: 64 bit (8 byte)

Nei sistemi Linux a 32 bit, come per i sistemi a 64 bit, ma:
— puntatore: 32 bit (4 byte)

In generale sizeof (tipo) in Cé la lunghezza in byte del tipo specificato

CYBER
2 C
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Array e puntatori (1)

I IS

e Laritmetica dei puntatori viene usata spesso per accedere agli
elementi di un array.

#include <stdio.h>
O void main() { ~ Elemento 0: 10
o int a[] = { 10, 33, 87, -4 }; > Elemento 1: 33
'g int *p = &a[0]; - Di nuovo elemento 1: 15
S printf("Elemento 0: %d\n", *p);
% printf("Elemento 1: %d\n", *(p+1));
Q. “(p+1)= 15;
printf("Di nuovo elemento 1: %d\n", a[1]);
}
£= CYBER
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Array e puntatori (2)
e [

e Array e puntatori in C sono praticamente la stessa cosa.

* Sep e un puntatore:
- *xp si puo scrivere come p [0]
- x(p+1) sipuo scrivere come p[1]
- In generale, * (p+n) si puo scrivere come p [n]

e Al contrario, se a € un array

— al[0] si puo scrivere come *a

— al[n] si puo scrivere come * (a+n)
'unica vera differenza € che una variabile array non si pudé modificare:

— a+=1 genera errore
- p+=1funziona

GYBER
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Scorrere un array con i puntatori

I TS

Sintassi basata su array Sintassi basata su puntatori

#include <stdio.h> #include <stdio. h>

int somma_array(size_t len, int a[]) { int somma_array(int *start, int* end) {
int somma = 0; int somma = 0;
for (size_t i = 0; i1 < len; i++) { for (int *p = start; p < end; p++) {
somma += a[i]; somma += *p;
} © }
return somma; g return somma;
b of 1}
©
void main() { c | void main() {
int mioarray[5] = {10, 20, 30, 40, 50}, Ei int mioarray[5] = {10, 20, 30, 40, 50}%};
int s = somma_array(5, mioarray); int s = somma_array(mioarray, mioarray+5);
printf("La somma dell'array é: %d\n", s); printf('"La somma dell'array é: %d\n", s);
} 3

CYBER
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Big endian e little endian (1)
a6 0
* Un valore di tipo int occupa 4 byte: ma come sono disposti in
memoria ?

e Little endian:

— Standard sulle architetture x86 e x86-64

— Il byte meno significativo viene salvato negli indirizzi piu bassi
e Big endian:

— Il byte piu significativo viene salvato negli indirizzi piu bassi

e Questi nomi traggono origine dal romanzo “| viaggi di Gulliver

CYBER
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Big endian e little endian (2)

.|
e Esempio: 0xO078A258

— Little endian:
58 A2 78 | 00
- Big endian:
00 78 A2 | 58

CYBER
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Big endian e little endian (3)
T

_ _ type casting: convince |l
#include <stdio.h> compilatore a trattare un

3 void main() { - puntatore a intero come fosse un
7 int v = 0; - puntatore a char
g char *p = (char*) &v;
© p[1] = 'A";
© printf("%d\n", v);
S }
)
> 16640
-V ' ??7?

GYBER *
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Accesso fuori dai margini (1)

o N
. :
)

In Java e Python, un tentativo di accedere ad un elemento inesistente
di un array o di una lista causa un errore

e |In C non si genera nessun errore!

— Si accede semplicemente a zone della memoria situate al di fuori
dall’array.

Qusto fenomeno € noto come buffer overflow, ed € probabilmente la
vulnerabilita pit comune nei programmi in C

CYBER
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Accesso fuori dai margini (2)

s ¥

#include <stdio.h>
void main() {
° int x = 0; I N
{g char s[] = "ciao"; :>
@] s[5] = 10; /
printf("%d\n", x);
}
= CYBER
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Esercitazione
T P
Esercizio

Trovare I'input che fa rispondere “Ce I'hai fatta” al
programma mychallenge3

CYBER
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Esercizi
T

Svolgere la challenge (fattibile)

SS 2.01 Digital billboard

(e una versione piu difficile di mychallenge3)

CYBER
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https://ctf.cyberchallenge.it/challenges#challenge-108

Esercizi
e

Svolgere la challenge (media)

SS 1.04 Unbreakable AES

(e una versione piu difficile di mychallenge?2)

CYBER
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https://ctf.cyberchallenge.it/challenges#challenge-105

Parametri su riga di comando (1)

s X
e Quando si lancia un programma, si possono passare parametri sulla
riga di comando

— Esempio: apt install default-jdk

programma parametro 1 parametro 2

* | parametri argc e argv della funzione main contengono il valore dei
parametri su riga di comando.

— In maniera analoga al parametro args del metodo main in Java
CYBER
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Parametri su riga di comando (2)
s X
* argc contiene il numero di parametri

* argv e un array di puntatori a caratteri
— Ovvero, in C, un array di stringhe
— Ogni stringa € un parametro della riga di comando
* argv[0] €il nome del programma

* argv[1] e il primo parametro
e ecosivia

CYBER
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Parametri su riga di comando (3)
e |

#include <stdio.h>
(&) void main(int argc, char *argv[]) {
%) for (int 1 = 0; 1 < argc; i++) {
g? printf("argv[%d]: %s\n", i, argv[i]);
}
}
\\ \\
\\\>\v
amato@atomino:~$ ./args Ciao parametro
argv[0]: ./args
argv[1]: Ciao
argv[2]: parametro
L= CYBER *
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PARTE 3

T
Gestione della memoria

CYBER
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Segmenti di memoria (1)
N

e Ogni processo ha della memoria allocata per Jish |~ Command line args
memorizzare dati e codice. e

e Questa memoria € divisa in aree specifiche:
— stack: per le variabili locali
— heap: per la memoria allocata dinamicamente

— bss: variabili globali non inizializzate

— data: variabili globali con valori iniziali

e e e 1 .. . hea
— rodata: dati inizializzati in sola lettura (stringhe) P
— area codice: per le istruzioni del programma bss
.data
£ = CYBER address 800y
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Esercitazione
T

e Usando readelf:

#include <stdio. h>

— disegnare una mappa di memoria S
dettagliata di questo programma; char “p = "Ciao mondo sola lettura”;

char s[] = "Ciao mondo";

— verificare la sezione in cui si int a[100];

trovano memorizzate le variabili

void main() {

memarea.c

int x;
del programma.
printf(" i: %p\n", &i);
printf(" p: %p\n", &p);
printf("*p: %p\n", p);
printf(" s: %p\n", &s);
printf(" a: %p\n", &a);
X

printf(" x: %p\n", &x);

CYBER
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| record di attivazione (1)

e Ogni volta che una funzione viene chiamata, viene creato un “record di
attivazione” nello stack

— Ogni record di attivazione contiene le variabili locali alla funzione, piu
altre informazioni ausiliarie

— Adifferenza di Python o Java, il record di attivazione contiene proprio i
valori delle variabili, non un riferimento allo heap

| record di attivazione si trovano in una area di memoria chiamata
stack che cresce verso indirizzi di memoria piu bassi

CYBER
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| record di attivazione (2)
T

Ox00606000606
variabili locali £2
#include <stdio.h> (a)
i f2(int a, int b) { info ausiliarie £2
int z = a + b; parametri £2
return z; (2, b)
o } variabili locali £1
%' int: f1(int x) { (v, k)
I int y =2 " xj info ausiliarie £1
n ﬁ ig:ulﬁn:kfz(x’ y)i parametri 1
3 ’ (x)
] ) variabili locali main
void main() ¢ o 7o
int res = fi(a); info ausiliarie main
ﬁ printf("%d\n", res); parametri main
} (argc, argv)
OXFFffffff
CYBER
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Funzioni che restituiscono array ? (1)
e |

o Attenzione

— una funzione non deve restituire puntatori a dati presenti nello stack
— quando la funzione termina questi dati potrebbero non esistere piu!

#include <stdio.h> 'a”aY POAlEE
) memorizzato nello
int *unit_point() { = - stack
int point[2] = { 1, 1 }, *
return point; pm— ) .
} ~ Potrebbe funzionare o generare

“segmentation fault”

stack2.c

void main() {
int *point = unit_point();
printf("%d %d\n", point[0], p01nt[1]),

CYBER s
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Funzioni che restituiscono array ? (2)
e

e Per questo, di solito in C le funzioni non restituiscono array

— Prendono invece come parametro l'array su cui devono operare

#include <stdio. h>

void unit_point(int point[]) {
point[0] = 1;
o point[1] = 1;
TH
X
Q
S void main() {
« int point[2];
unit_point(point);
printf("%d %d\n", point[0], point[1]),
3
== CYBER A
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Allocazione dinamica (1)

<

e Ma perché in Java e Python non c'é problema a restituire un array (
simile)?

def unit_point():

point = [1, 1]
return point
return po ;

}
void main() {

point = unit_point()
1nt “poi

print(point[0], point][

point[1]);

CYBER
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Allocazione dinamica (2)

e X
e Perché in Java e Python:

— array e simili non sono creati nello stack ma nell’heap
— non subiscono la sorte del record di attivazione

— in Java l'operatore new indica che stiamo allocando qualcosa nell’heap
e Si puo allocare memoria nell’heap in C ?

— Si, con la funzione malloc (e similari)

— void *malloc(size_t size)

Riserva una quantita di memoria pari a size byte, e restituisce il puntatore
a questa zona di memoria

CYBER
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Allocazione dinamica (3)

#include <stdio.h> J importa le funzioni di |
#include <stdlib.h> ——— allocazione della memoria
int *unit_point() {
int *point = malloc(z * 51zeof(1nt)),
&) point[0] =
S point[1] = n _— —
= ) return po”‘t; - alloca memoria sufficiente
S per 2 interi
void main() {
int *point = unit_point();
printf("%d %d\n", point[0], point[1]);
3 -
la memoria allocata da \
malloc € sempre valida
£= CYBER
= C
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Liberare la memoria allocata (1)
e X
e Ma chilibera la memoria allocata per un dato che non serve piu ?
— In Java e Python ci pensa una componente dell’interprete chiamato
“garbage collector”

e In Cil garbage collector non esiste

Tutta la memoria allocata con malloc va liberata con la funzione free
— Altrimenti rimane in vita fino al termine del programma

CYBER
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Liberare la memoria allocata (2)
T |

#include <stdlib.h> SIZE = 2000000
#include <stdio.h> count = 0
#define SIZE 2000000 é while True:
. . ) count += 1
void main() { g print("count:", count)
_ B 1 = [0] * SIZE
) int count = 0;
@ while (1) {
< count += 1;
Y= printf("count: %d\n", count);
int *p = malloc(SIZE * sizeof(int)); )
for (size_t i = 0; i1 < SIZE; i++) {
p[i] = ©O; continua I'esecuzione per
sempre
¥
by

prima o poi viene ucciso dal
sistema operativo

= CYBER
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Liberare la memoria allocata (3)
N

#::anlude <stdl_ib.h> SIZE = 2000000
#include <stdio.h> count = 0
#define SIZE 2000000 é while True:
. . Iob) count += 1
void main() { <5 print("count:", count)
_ B 1 = [0] * SIZE
&) int count = 0;
o while (1) {
% count += 1;
&= printf("count: %d\n", count);
int *p = malloc(SIZE * sizeof(int)); —
for (size_t i = 0; i1 < SIZE; i++) {
p[i] = ©O; continua I'esecuzione per
3 sempre
free(p);
) :
3
aggiungere free(p) per
risolvere il problema
CYBER
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Liberare la memoria allocata (4)

B

e La cosa pero non e sempre semplice:
Quando deallocare la memoria ?

— Se si dealloca quando ancora la si sta usando, € un problema
— Se si dealloca due volte, € un problema

#include <stdlib.h>
(&) void main() {
™ int *p = malloc(sizeof(int)); : ' free(): double free detected in tcache 2
8 free(p); 7 Aborted (core dumped)
= free(p);
}
£E= CYBER W
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Esercizi
T

Svolgere la challenge (difficile)

SS 1.03 Flag Checker

CYBER
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https://ctf.cyberchallenge.it/challenges#challenge-104

Esercizi
T |

Svolgere la challenge (difficile)

SS 1.06 pacman
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https://ctf.cyberchallenge.it/challenges#challenge-107

Esercizi
s
Svolgere la challenge (molto difficile)

SS 1.05 morph
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https://ctf.cyberchallenge.it/challenges#challenge-106
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