Software Security 09

Format strings vulnerabilities

Gianluca Amato
Universita di Chieti-Pescara

CYBER
= CHALLENGEIT

CYBERSECURITY
‘% NATIONAL
i+ LABORATORY

https://cybersecnatlab.it




License & Disclaimer
e

License Information Disclaimer

This presentation is licensed under the > We disclaim any warranties or representations
Creative Commons BY-NC License as to the accuracy or completeness of this
material.

> Materials are provided “as is” without
warranty of any kind, either express or
implied, including without limitation,
warranties of merchantability, fitness for a
particular purpose, and non-infringement.

> Under no circumstances shall we be liable for
any loss, damage, liability or expense incurred
http://creativecommons.org/licenses/by-nc/3.0/legalcode or suffered which is claimed to have resulted
from use of this material.

To view a copy of the license, visit:

CYBER Ty
= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025 %



Vulnerabilita delle stringhe di formato

N T T

e Le vulnerabilita della stringa di formato (format strings
vulnerabilities) sono una serie di bug

— identificati nella seconda meta degli anni 2000

— selative alle stringhe di formato che si trovano come primo
parametri di varie funzioni C (printf, sprintf, fprintf,...);

— consentono all’attaccante di corrompere la memoria (come in un
buffer overflow)

printf("The answer is %d!",42)

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

Iz



Uso delle stringhe di formato
A
e Le stringhe di formato consentono di
— Convertire vari tipi nella loro rappresentazione come stringa.
— Specificare il formato della rappresentazione
— Cambiare il contenuto delle variabili !!

e Quest’ultima possibilita da origine, se non usate

e Vedremo che questo tipo di vulnerabilita ricorda molto
EYBER

correttamente, a vulnerabilita molto serie!
qguelle di tipo SQL injection e Cross-site scripting
HALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 26.05.2025

18



Vulnerabilita
D

e Consideriamo il seguente programma

#include <stdio. h>

int main(int argc, char *argv([]) {
o if (argc > 1) {
S printf(argv[1]);
< printf("\n");
D } else {
printf("Please, give me a value to echo.\n");
}
return 0;
}
== CYBER
= CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025




Vulnerabilita
R T
e Possiamo osservare che nel programma il primo argomento
di linea di comando viene passato a printf nello spazio
normalmente dedicato alla stringa di formato

\arywe —~ 1) 1

printf(argv[l1]);
nrintf("\n"Y:

e Cosa accade se nella riga di comando vengono passate
stringhe contenenti il simbolo % ?

$ ./echo %s¥%s¥s%s%s%sUs¥s
Segmentation fault (core dumped)

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025



Vulnerabilita

A TR

e Possiamo far andare in crash il programma aggiungendo un
numero adeguato di %s

— Per ogni 7s, la funzione printf cerca il successivo parametro
(puntatore alla stringa da stampare) nello stack o nei registri.
— La funzione main non ha messo niente di specifico né nello stack
né nei registri
« | valori presi da printf sono quindi valori che stanno li per altri motivi

— Se uno di questi valori punta ad una zona di memoria non
allocata, si genera un errore di segmentation fault.

CYBER
= CHALLENGEIT

Iz

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025



Vedere il contenuto dello stack

oje N\ [ ]
[

La stessa vulnerabilita si puo usare per leggere il contenuto
dello stack, con lo specificatore di formato %

— Lo specificatore %x legge un valore dallo stack e lo visualizza in
esadecimale.

— Possiamo usare %nx (con n intero) per stampare il valore su n cifre

— Possiamo usare %n$x (con n intero) per stampare il valore dell’n-

esimo parametro (senza dovere scrivere tutti i %x precedenti)

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

Iz



Vedere il contenuto dello stack

T II T
e Consideriamo la seguente variazione:

#include <stdio. h>

int main(int argc, char** argv) {

long long valuel = Oxabababababababab;
long long value2 = Oxcdcdcdcdcdcdcdcd;
&) long long value3d = Oxefefefefefefefef;
o\
2 if (argc > 1) {
&) printf(argv([1]);
o printf("\n");
} else {
printf("Please, give me a value to echo.\n");
3
return 0;
3
£= CYBER
=F CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025



Vedere il contenuto dello stack

o
e Possiamo usare le format string vulnerabilities per vedere |l
contenuto dello stack.

e Nei sistemi a 32 bit, possiamo leggere le tre variabili
valuel, value2 e value3 con

$ ./echo2-32 "%x %x %x %x %¥x %1lx %¥11lx %11x"
f?fﬂcﬂﬂﬂ BB 0B 0 efefefefefefefef cdecdecdededededed abababababababab

| primi cinnque %x visualizzano solo semplici valori di
padding aggiunti all’inizio di main per far si che la cima
dello stack fosse allineata a 16 byte

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

=



Vedere il contenuto dello stack

T,
e Nei sistemi a 64 bit la procedura € simile ma la stringa € leggermente
diversa.

$ ./echo2 "%11lx %11x %1Tlx %1lx %1lx %1lx %1lx %1lx %1Tlx %11lx %Llx"
Jfff29a3a678 7ffT29a3a690 402e00 7fbfB1674680 7fbfO1676000 7fff29a3a678 200000000 0 efefefefefefefef cdcdcdcdcdcdeded abababababababab

e |n questo caso:

— | primi cinque %11x visualizzano i valori dei registri rsi, rdx, rcx, r8, r9 che,
secondo le convenzioni, contengono i primi parametri
e rdi contiene la stringa di formato

— Il sesto e settimo %11x contengo i valori di argc e argv che la funzione main si
salva nello stack quando viene chiamata

— Lottavo %11x visualizza un dato per il padding
— Seguono gli %11x che visualizzano le variabili

CYBER
= CHALLENGEIT

18

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025



Corruzione della memoria
R T CCCCCCCCCCCCCCCCCCCCCC T
e La vulnerabilita delle stringhe di formato consente anche di
modificare la memoria.

— Lo specificatore %n interpreta il proprio parametro come un
indirizzo di memoria, nella quale la printf salvera il numero di
caratteri stampati.

— Se riusciamo a fornire nello stack in corrispondenza del parametro
%n un valore a nostra scelta, possiamo modificare qualunque

locazione di memoria.

CYBER
= CHALLENGEIT

=

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025



Corruzione della memoria
S

#include <stdio. h>
int flag;

int main(int argc, char** argv) {
if (argc < 1) {

fﬂ printf("Please, enter your name!\n");
‘O }
g
ig printf(argv[1]);
&)
if (flag) {
printf("\n\nYou win!\n");
} else {
printf("\n\nTry again.\n");
}
}
== CYBER
=7 CHALLENGEIT © CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025




Corruzione della memoria

Ll

« Notate che la variabile f1ag é globale

— non si trova quindi nello stack ma nel segmento dati
e l'idea dell’attaco é:

— Individuare la posizione in memoria della variabile flag
— Fornire una stringa in input che:
e Contiene questo indirizzo

Legge con %x tutti i valori nello stack fino ad arrivare alla posizione che
contiene che questo indirizzo

e Termina conun %n

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

18



Posizione di flag

sl

o La posizione di £lag la si puo individuare disassemblando il
codice.

e |In questo caso, poiché la variabile e globale e il binario

contiene |a tabella dei simboli, possiamo direttamente
usare readelf.

- readelf -a changeit-32 | grep flag
- Otteniamo:

e 37: 0804b014 4 OBJECT GLOBAL DEFAULT 25 flag

CYBER
= CHALLENGEIT

© CINI - 2021, Gianluca Amato - 2025 Rel. 26.05.2025

18



-

G
£ C

YEBER
HALLENGEIT

© CINI - 2021, Gianluca Amato - 2025

Rel. 26.05.2025




Software Security 09

Format strings vulnerabilities

FINE

Gianluca Amato
Universita di Chieti-Pescara

CYBER
= CHALLENGEIT

CYBERSECURITY
‘% NATIONAL
i+ LABORATORY

https://cybersecnatlab.it




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

