

Gianluca Amato
Università di Chieti-Pescara

https://cybersecnatlab.it

Software Security 09

Format strings vulnerabilities

2

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

License & Disclaimer

This presentation is licensed under the
Creative Commons BY-NC License

To view a copy of the license, visit:

http://creativecommons.org/licenses/by-nc/3.0/legalcode

 We disclaim any warranties or representations
as to the accuracy or completeness of this
material.

 Materials are provided “as is” without
warranty of any kind, either express or
implied, including without limitation,
warranties of merchantability, fitness for a
particular purpose, and non-infringement.

 Under no circumstances shall we be liable for
any loss, damage, liability or expense incurred
or suffered which is claimed to have resulted
from use of this material.

License Information Disclaimer

3

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Vulnerabilità delle stringhe di formato

● Le vulnerabilità della stringa di formato (format strings
vulnerabilities) sono una serie di bug
– identificati nella seconda metà degli anni 2000;
– selative alle stringhe di formato che si trovano come primo

parametri di varie funzioni C (printf, sprintf, fprintf, …);
– consentono all’attaccante di corrompere la memoria (come in un

buffer overflow)

4

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Uso delle stringhe di formato

● Le stringhe di formato consentono di
– Convertire vari tipi nella loro rappresentazione come stringa.
– Specificare il formato della rappresentazione.
– Cambiare il contenuto delle variabili !!

● Quest’ultima possibilità dà origine, se non usate
correttamente, a vulnerabilità molto serie!

● Vedremo che questo tipo di vulnerabilità ricorda molto
quelle di tipo SQL injection e Cross-site scripting.

5

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Vulnerabilità

● Consideriamo il seguente programma

#include <stdio.h>

int main(int argc, char *argv[]) {
 if (argc > 1) {
 printf(argv[1]);
 printf("\n");
 } else {
 printf("Please, give me a value to echo.\n");
 }
 return 0;
}

ec
ho

.c
ec

ho
.c

6

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Vulnerabilità

● Possiamo osservare che nel programma il primo argomento
di linea di comando viene passato a printf nello spazio
normalmente dedicato alla stringa di formato

● Cosa accade se nella riga di comando vengono passate
stringhe contenenti il simbolo % ?

7

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Vulnerabilità

● Possiamo far andare in crash il programma aggiungendo un
numero adeguato di %s
– Per ogni %s, la funzione printf cerca il successivo parametro

(puntatore alla stringa da stampare) nello stack o nei registri.
– La funzione main non ha messo niente di specifico né nello stack

né nei registri
● I valori presi da printf sono quindi valori che stanno lì per altri motivi

– Se uno di questi valori punta ad una zona di memoria non
allocata, si genera un errore di segmentation fault.

8

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Vedere il contenuto dello stack

● La stessa vulnerabilità si può usare per leggere il contenuto
dello stack, con lo specificatore di formato %x
– Lo specificatore %x legge un valore dallo stack e lo visualizza in

esadecimale.
– Possiamo usare %nx (con n intero) per stampare il valore su n cifre

– Possiamo usare %n$x (con n intero) per stampare il valore dell’n-
esimo parametro (senza dovere scrivere tutti i %x precedenti)

9

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Vedere il contenuto dello stack

● Consideriamo la seguente variazione:

#include <stdio.h>

int main(int argc, char** argv) {
 long long value1 = 0xabababababababab;
 long long value2 = 0xcdcdcdcdcdcdcdcd;
 long long value3 = 0xefefefefefefefef;

 if (argc > 1) {
 printf(argv[1]);
 printf("\n");
 } else {
 printf("Please, give me a value to echo.\n");
 }
 return 0;
}

ec
ho

2.
c

ec
ho

2.
c

10

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Vedere il contenuto dello stack

● Possiamo usare le format string vulnerabilities per vedere il
contenuto dello stack.

● Nei sistemi a 32 bit, possiamo leggere le tre variabili
value1, value2 e value3 con

● I primi cinnque %x visualizzano solo semplici valori di
padding aggiunti all’inizio di main per far sì che la cima
dello stack fosse allineata a 16 byte.

11

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Vedere il contenuto dello stack

● Nei sistemi a 64 bit la procedura è simile ma la stringa è leggermente
diversa.

● In questo caso:
– I primi cinque %llx visualizzano i valori dei registri rsi, rdx, rcx, r8, r9 che,

secondo le convenzioni, contengono i primi parametri
● rdi contiene la stringa di formato

– Il sesto e settimo %llx contengo i valori di argc e argv che la funzione main si
salva nello stack quando viene chiamata

– L’ottavo %llx visualizza un dato per il padding

– Seguono gli %llx che visualizzano le variabili

12

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Corruzione della memoria

● La vulnerabilità delle stringhe di formato consente anche di
modificare la memoria.
– Lo specificatore %n interpreta il proprio parametro come un

indirizzo di memoria, nella quale la printf salverà il numero di
caratteri stampati.

– Se riusciamo a fornire nello stack in corrispondenza del parametro
%n un valore a nostra scelta, possiamo modificare qualunque
locazione di memoria.

13

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Corruzione della memoria

#include <stdio.h>

int flag;

int main(int argc, char** argv) {
 if (argc < 1) {
 printf("Please, enter your name!\n");
 }

 printf(argv[1]);

 if (flag) {
 printf("\n\nYou win!\n");
 } else {
 printf("\n\nTry again.\n");
 }
}

ch
an

ge
it.

c
ch

an
ge

it.
c

14

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Corruzione della memoria

● Notate che la variabile flag è globale
– non si trova quindi nello stack ma nel segmento dati

● L’idea dell’attaco è:
– Individuare la posizione in memoria della variabile flag
– Fornire una stringa in input che:

● Contiene questo indirizzo
● Legge con %x tutti i valori nello stack fino ad arrivare alla posizione che

contiene che questo indirizzo
● Termina con un %n

15

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Posizione di flag

● La posizione di flag la si può individuare disassemblando il
codice.

● In questo caso, poiché la variabile è globale e il binario
contiene la tabella dei simboli, possiamo direttamente
usare readelf.
– readelf -a changeit-32 | grep flag
– Otteniamo:

● 37: 0804b014 4 OBJECT GLOBAL DEFAULT 25 flag

16

© CINI – 2021, Gianluca Amato – 2025 Rel. 26.05.2025

Gianluca Amato
Università di Chieti-Pescara

https://cybersecnatlab.it

Software Security 09

Format strings vulnerabilities

FINE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

