© 00

Giochi e Reinforcement Learning
= GioRelL su FAD

Introduction.

Dynamic Programming (DP): planning.
@ Markov Decision Processes (MDP).
@ Prediction, improvement, control: policy iteration.
@ Value iteration.

Reinforcement Learning (RL): learning in the tabular case.

@ Model-free prediction: Monte Carlo (MC) methods.

@ Model-free prediction: Temporal Difference (TD)
methods.

© Model-free control: MC methods.

@ Model-free control: TD methods.

@ On-policy vs off-policy methods: SARSA vs Q-learning.

Multi-armed bandit. Very likely.
MCTS. Likely.

Reinforcement Learning (RL): learning in the function
approximation case. Maybe.

Both the organization and the content of the slides are extracted
from the following sources:

@ Reinforcement Learning: An Introduction. Richard S. Sutton
and Andrew G. Barto, second edition, 2018.

@ UCL Course on RL, videos and slides. David Silver, 2015.

o Tutorial: Introduction to Reinforcement Learning with
Function Approximation. Richard S. Sutton, 2016.

@ Implementation of Reinforcement Learning algorithms. Denny
Britz, GitHub project, 2016 (updated in 2018).

http://incompleteideas.net/book/RLbook2018.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://www.youtube.com/watch?v=ggqnxyjaKe4
https://www.youtube.com/watch?v=ggqnxyjaKe4
https://github.com/dennybritz/reinforcement-learning

@ What is Reinforcement Learning?

Machine
Learning

@ Agent-oriented learning: an agent learns by interacting with
an environment to achieve a goal.

@ The agent learns by trial and error, evaluating a delayed
feedback (reward).

@ The kind of machine learning most like natural learning.

@ Learning that can tell for itself when it is right or wrong.

@ RL is not completely supervised: only reward.
@ RL is not completely unsupervised: there is reward.

@ Time matters: sequential data.

@ Time matters: actions change possible future.

© Examples

@ Resources management in computer clusters.
o Traffic light control.

@ Robotics.

o Web system configuration.

@ Chemistry.

@ Personalized recommendations.
°

Bidding and advertising.

https://towardsdatascience.com/applications-of-reinforcement-learning-in-real-world-1a94955bcd12

@ Adaptive controller: adjusts parameters of a petroleum
refinery’s operation in real time.

o Gazelle calf. Learn to run.
@ Trash-collecting mobile robot. Collect trash.

@ Preparing breakfast. Feed yourself.

@ Chess player. Win (or enjoy).

@ AlphaGo's family.

o StarCraft Il. Very recent achievement, 19 Dec 2018.
@ Atari games. Very recent achievement, 28 Sep 2018.
o TD-Gammon.

o Atari:
https://www.youtube.com/watch?v=V1eYniJORnk&vl=en

o AlphaGo:
https://www.youtube.com/watch?v=8dMFJpEGNLQ

o StarCraft: https://youtu.be/UuhECwm31dM

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://openreview.net/forum?id=r1lyTjAqYX
https://www.youtube.com/watch?v=V1eYniJ0Rnk&vl=en
https://www.youtube.com/watch?v=8dMFJpEGNLQ
https://youtu.be/UuhECwm31dM

© The RL setup: problem and actors

@ Trying to reach a goal.

@ Interactions: active decision-making agent vs environment.
@ Uncertainty about the environment.

o Effects of actions cannot be fully predicted: adaptation
required (learning).

All goals can be described by the maximization of expected
cumulative reward (the value).

@ Is it true? Interesting analysis at
http://incompleteideas.net/rlai.cs.ualberta.ca/
RLAI/rewardhypothesis.html.

@ Related with the expected utility hypothesis from von
Neumann-Morgenstern utility theory.

http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html
http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html

Decision problem: we would like to choose actions that maximize
the return, i.e. the total future reward.

Actions may have long term consequences. I

The best we can aim for is maximizing the value, i.e. the expected
total future reward.

Find an example of a deterministic task, that is, a task where you
know the outcome of your actions.

@ A financial investment (may take months to mature).

o Refuelling a helicopter (might prevent a crash in several
hours).

@ Blocking opponent moves (might help winning chances many
moves from now).

Discuss the difference between return and value. l

Games: Rt := —1,0,+1 (win, draw, lose). More generally,
R+ can be the final score.

Games: Rt :=0,+1 (win, lose). In this case, the value is the
probability of winning. Why?

Atari games: R; is the immediate score increment at step t.
Walking robot: R; := +1 for every step he doesn't fall.
https://www.youtube.com/watch?v=gn4nRCCITwQ
Financial investment: R; is the money increment in the last
time step in portfolio.

Maze and Gridworld: 4100 for reaching the exit, 0 otherwise.
Wrong. Why?

https://www.youtube.com/watch?v=gn4nRCC9TwQ

e Games: Ry := —1,0,+1 (win, draw, lose). More generally,
R+ can be the final score.

e Games: Ry :=0,+1 (win, lose). In this case, the value is the
probability of winning. Why?

@ Atari games: R; is the immediate score increment at step t.
e Walking robot: R; := +1 for every step he doesn't fall.
https://www.youtube.com/watch?v=gn4nRCCITwQ

e Financial investment: R; is the money increment in the last
time step in portfolio.

o Maze-and-Gridworld-—100-forreaching-theexit, O-otherwise:
Wrong—Why?

@ Maze and Gridworld: —1 for every move. Correct. Why?

https://www.youtube.com/watch?v=gn4nRCC9TwQ

reward Rt

@ ...we (the agent) receive R; and observe O. ..
@ ...we choose the action A; ~ (-, f(Os, Rt, At—1, Or—1, Re—1,...)). ..

@ ...and because of our action A¢, the environment send us a reward
R:11 and a new state, that we observe as O;4. ..

reward Rt

@ ...we (the agent) receive R; and observe O. ..
@ ...we choose the action A; ~ 7(-, f(history)). ..

@ ...and because of our action A¢, the environment send us a reward
R:11 and a new state, that we observe as O;4. ..

@ Receives observation O;.

action @ Receives scalar reward R;.
Ay o Computes his own state
a
S

@ Executes action A;.

@ Receives action A;.

@ Computes his own state
e

@ Emits observation O¢y.

@ Emits scalar reward Ryy.

e What do we know? State, observability and distribution model

@ History: the sequence of observations, actions, rewards up to
time step t:

Ht = Ol, Rl,A]_, coo ;At—la Ot7 Rt'

@ The agent selects actions, and the environment answers with
observations and rewards.

@ State: the information used (by the agent and the
environment) to determine what happens next.

@ State is naturally a sequence S;.
@ Agent state is a function of history: S; := f(H;).

e Environment state 5S¢ is different from agent state S;.

3 Ve | 1 ,.‘;"'\

) 7 ‘,’\{ UV N

observation VG s 0 2 A
V& /

reward R,

environment state S7

action

A

t

@ Environment state 5f:
data the environment
uses to pick the next
observation and reward.

@ 57 is not usually visible to
the agent.

@ Even if 57 is visible, it
may contain irrelevant
information.

agent state S}

observation action
—_—
O A @ Agent state S?: data the
agent uses to pick the
next action.

@ 5/ is the information used
by RL algorithms.

@ S7 can be any function of
history: S7 := f(H;).

Since we have no control of environment, everything is a random
variable.

A sequence of states (random variables) is Markov if and only if

Pr(Se+1/Se) = Pr(Se41/S1,- -+, St)

@ The future is independent of the past given the present:
St — Ht+1:+oo

@ Once the state is known, the history may be thrown away: the
state is a sufficient statistic of the future.

Is the environment state S Markov? Is the history H; Markov? I

The agent indirectly observes environment.

@ Robot with camera vision, no absolute location: Oy = camera
image at time t.

@ Poker playing agent: O:; = public cards at time t.

Agent must construct its own state representation S7. For
instance:

e Complete history: S7 := H;.

@ Beliefs of environment state:
S = (P(55 =s1),...,P(SF = sn)).

@ Recurrent neural network approximation:
57 = 0(S57_1Ws + O W,).

@ The agent directly observes
environment state:
Or=57=5;.

@ Agent state and environment

' state coincides!

reward | R, @ ...we (the agent) receive R;
and observe S;. . .

action

A

@ ...and thus we decide to do
action Ay ~ (-, S¢). ..

@ ...and because of our action
A, the environment send us
a reward R;;1 and a new
state, that we observe as

Sei1...

@ Predicts what the environment will do next, via a probability
distribution p that predicts the next state and reward:

p(s',rls,a) == Pr(Ser1 =8, Rey1 = r|Se = s, Ar = a).

@ If we have p, we can predict next state and next reward, we
can compute the average next reward, and so on.

@ We assume the Markov property. Exercise: write it.
@ Usually, we don’t know p. For this reason it is called model.

@ Model: our representation of the environment. Can be perfect
(a game with rules) or not (weather forecast).

@ We assume that the environment is time homogeneous: p
does not depend on t. Exercise: is this usually true?

Example: the maze

Start

Goal

Exercise

Discuss this example in terms of the language you have
learned up to now.

© What can we do? Policy and value

Example: a policy for the maze

StrategyPolicy
Arrows represent the policy w: which action to take from
every state.

Example: optimal policy for the maze

Exercise

Choose a state s (any state, not only start) and follow the
policy. Would you call this policy optimal?

Example: values of the optimal policy for the maze

EICCIKIE
-
@ Value v, (s) for every state s,
for the optimal policy 7 of
previous slide.

. .

Exercise |
Choose a state s and compute v, (s) by yourself. If s’ denote
the successor state of s, can the value v, (s’) help with this
computation?

G The never-ending control loop: prediction = improvement

Forecast the future: can you say from each state how much will be
your return? It depends on the policy!

Change the future: can you find a different policy that will give
you a better return?

Change the future: can you find the best policy at all?

State formally the prediction, the improvement and the control
problem.

+5

0

#

i

(@)

Compute the value function for the uniform random policy. I

A
< >
v
Actions

3.3

8.8

4.4

5.3

1.5

1.5

3.0

2.3

1.9

0.5

0.1

0.7

0.7

0.4

-0.4

-1.0

-0.4

-0.4

-0.6

-1.2

-1.9

-1.3

-1.2

1.4

-2.0

(b)

Al |By 3.3/ 8.8|4.4/53[1.5
+5 A 15/3.0/2.3/1.9/05
A0 |3"l -« 0.1 0.7/ 0.7/ 0.4|-0.4
v 1.0-0.4-0.4-0.6-1.2
- Actions
A‘|{ 1.9/-1.3/-1.2-1.4]-2.0
(a) (b)

Find an improvement of the uniform policy. I

Al |By 22.0(24.422.0(19.417.5 — oDl [P

+5 19.8/22.0{19.817.8/16.0 [I R

0 | B’ 17.8(19.8/17.8/16.0{14.4 L e O A O

16.0/17.8/16.014.4/13.0 LR O O A

A"f 14.4/16.0{14.4/13.0[11.7 1 o s
a) gridworld b) Uk C) T

@ Compute the optimal value function over all possible policies.

@ Given the optimal value v, as above, find the optimal policy.

@ Is the optimal policy unique?

@ Planning, learning and the XX compromise

Two fundamental problems appear in sequential decision making:
planning and learning. J

@ A distribution model of the environment is known.

@ The agent performs computations via the distribution model,
no external interaction with the environment. Average return.

@ The agent improves its policy.

@ The environment is initially unknown.

@ The agent interacts with the environment, hopefully via a
sample model. Empirical mean of return.

@ The agent improves its policy.

Both planning and learning are based on looking ahead to future
events, computing a backed-up value, and then using it as an
update target for an approximate value function.

The heart of both planning and learning is the computation of
value functions for states and actions.)

The heart of both planning and learning is the improvement of the
policy.

@ Value based: no policy
(implicit), value function.

@ Policy based: policy, no value
function.

@ Actor-Critic: policy, value

Value Function i function used to improve the

policy.

@ Model based: policy and/or
value function, model.

@ Model free: policy and/or value
function, no model.

Put in this taxonomy the RL algorithms you will learn. I

@ Reinforcement learning is trial-and-error learning.
@ Take actions that usually give high reward? Exploitation!

@ Take actions that were never explored? Exploration!

@ The policy should make a compromise between exploration
and exploitation.

v

@ Restaurant selection: favourite place or new try?

@ Qil drilling: best location or promising spot?
@ Game playing: best or experimental move?
Suppose you have 10 different slot machines where you can play.

You have 1000€, each play costs 1€. Propose an
exploration /exploitation policy for maximizing your final return.

@ Understand the RL problem, and how RL differs from
supervised learning.

@ Understand reward, return and how they are used to make
decisions.

@ Understand actions, states and rewards in term of
agent/environment interactions.

@ Reinforcement Learning (RL) is concerned with goal-directed
learning and decision-making.

@ In RL an agent learns from experiences it gains by interacting
with the environment. In supervised learning we cannot affect
the environment.

@ In RL rewards are often delayed in time and the agent tries to
maximize a long-term goal. For example, one may need to
make seemingly suboptimal moves to reach a winning position
in a game.

@ An agent interacts with the environment via actions. The
environment answers with states and rewards.

	What is Reinforcement Learning?
	Examples
	The RL setup: problem and actors
	What do we know? State, observability and distribution model
	What can we do? Policy and value
	The never-ending control loop: prediction improvement
	Planning, learning and the XX compromise

