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Introduction.

Dynamic Programming (DP): planning.
@ Markov Decision Processes (MDP).
@ Prediction, improvement, control: policy iteration.
@ Value iteration.

Reinforcement Learning (RL): learning in the tabular case.

@ Model-free prediction: Monte Carlo (MC) methods.

@ Model-free prediction: Temporal Difference (TD)
methods.

© Model-free control: MC methods.

@ Model-free control: TD methods.

@ On-policy vs off-policy methods: SARSA vs Q-learning.

Multi-armed bandit. Very likely.
MCTS. Likely.

Reinforcement Learning (RL): learning in the function
approximation case. Maybe.



Both the organization and the content of the slides are extracted
from the following sources:

@ Reinforcement Learning: An Introduction. Richard S. Sutton
and Andrew G. Barto, second edition, 2018.

@ UCL Course on RL, videos and slides. David Silver, 2015.

o Tutorial: Introduction to Reinforcement Learning with
Function Approximation. Richard S. Sutton, 2016.

@ Implementation of Reinforcement Learning algorithms. Denny
Britz, GitHub project, 2016 (updated in 2018).



http://incompleteideas.net/book/RLbook2018.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://www.youtube.com/watch?v=ggqnxyjaKe4
https://www.youtube.com/watch?v=ggqnxyjaKe4
https://github.com/dennybritz/reinforcement-learning




@ What is Reinforcement Learning?



Machine
Learning




@ Agent-oriented learning: an agent learns by interacting with
an environment to achieve a goal.

@ The agent learns by trial and error, evaluating a delayed
feedback (reward).

@ The kind of machine learning most like natural learning.

@ Learning that can tell for itself when it is right or wrong.

@ RL is not completely supervised: only reward.
@ RL is not completely unsupervised: there is reward.

@ Time matters: sequential data.

@ Time matters: actions change possible future.




© Examples



@ Resources management in computer clusters.
o Traffic light control.

@ Robotics.

o Web system configuration.

@ Chemistry.

@ Personalized recommendations.
°

Bidding and advertising.



https://towardsdatascience.com/applications-of-reinforcement-learning-in-real-world-1a94955bcd12

@ Adaptive controller: adjusts parameters of a petroleum
refinery’s operation in real time.

o Gazelle calf. Learn to run.
@ Trash-collecting mobile robot. Collect trash.

@ Preparing breakfast. Feed yourself.

@ Chess player. Win (or enjoy).




@ AlphaGo's family.

o StarCraft Il. Very recent achievement, 19 Dec 2018.
@ Atari games. Very recent achievement, 28 Sep 2018.
o TD-Gammon.

o Atari:
https://www.youtube.com/watch?v=V1eYniJORnk&vl=en

o AlphaGo:
https://www.youtube.com/watch?v=8dMFJpEGNLQ

o StarCraft: https://youtu.be/UuhECwm31dM



https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://openreview.net/forum?id=r1lyTjAqYX
https://www.youtube.com/watch?v=V1eYniJ0Rnk&vl=en
https://www.youtube.com/watch?v=8dMFJpEGNLQ
https://youtu.be/UuhECwm31dM

© The RL setup: problem and actors



@ Trying to reach a goal.

@ Interactions: active decision-making agent vs environment.
@ Uncertainty about the environment.

o Effects of actions cannot be fully predicted: adaptation
required (learning).

All goals can be described by the maximization of expected
cumulative reward (the value).

@ Is it true? Interesting analysis at
http://incompleteideas.net/rlai.cs.ualberta.ca/
RLAI/rewardhypothesis.html.

@ Related with the expected utility hypothesis from von
Neumann-Morgenstern utility theory.



http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html
http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html

Decision problem: we would like to choose actions that maximize
the return, i.e. the total future reward.

Actions may have long term consequences. I

The best we can aim for is maximizing the value, i.e. the expected
total future reward.

Find an example of a deterministic task, that is, a task where you
know the outcome of your actions.




@ A financial investment (may take months to mature).

o Refuelling a helicopter (might prevent a crash in several
hours).

@ Blocking opponent moves (might help winning chances many
moves from now).

Discuss the difference between return and value. l




Games: Rt := —1,0,+1 (win, draw, lose). More generally,
R+ can be the final score.

Games: Rt :=0,+1 (win, lose). In this case, the value is the
probability of winning. Why?

Atari games: R; is the immediate score increment at step t.
Walking robot: R; := +1 for every step he doesn't fall.
https://www.youtube.com/watch?v=gn4nRCCITwQ
Financial investment: R; is the money increment in the last
time step in portfolio.

Maze and Gridworld: 4100 for reaching the exit, 0 otherwise.
Wrong. Why?



https://www.youtube.com/watch?v=gn4nRCC9TwQ

e Games: Ry := —1,0,+1 (win, draw, lose). More generally,
R+ can be the final score.

e Games: Ry :=0,+1 (win, lose). In this case, the value is the
probability of winning. Why?

@ Atari games: R; is the immediate score increment at step t.
e Walking robot: R; := +1 for every step he doesn't fall.
https://www.youtube.com/watch?v=gn4nRCCITwQ

e Financial investment: R; is the money increment in the last
time step in portfolio.

o Maze-and-Gridworld-—100-forreaching-theexit, O-otherwise:
Wrong—Why?

@ Maze and Gridworld: —1 for every move. Correct. Why?



https://www.youtube.com/watch?v=gn4nRCC9TwQ

reward Rt

@ ...we (the agent) receive R; and observe O. ..
@ ...we choose the action A; ~ (-, f(Os, Rt, At—1, Or—1, Re—1,...)). ..

@ ...and because of our action A¢, the environment send us a reward
R:11 and a new state, that we observe as O;4. ..




reward Rt

@ ...we (the agent) receive R; and observe O. ..
@ ...we choose the action A; ~ 7(-, f(history)). ..

@ ...and because of our action A¢, the environment send us a reward
R:11 and a new state, that we observe as O;4. ..




@ Receives observation O;.

action @ Receives scalar reward R;.
Ay o Computes his own state
a
S

@ Executes action A;.

@ Receives action A;.

@ Computes his own state
e

@ Emits observation O¢y.

@ Emits scalar reward Ryy.




e What do we know? State, observability and distribution model



@ History: the sequence of observations, actions, rewards up to
time step t:

Ht = Ol, Rl,A]_, coo ;At—la Ot7 Rt'

@ The agent selects actions, and the environment answers with
observations and rewards.

@ State: the information used (by the agent and the
environment) to determine what happens next.

@ State is naturally a sequence S;.
@ Agent state is a function of history: S; := f(H;).

e Environment state 5S¢ is different from agent state S;.
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@ Environment state 5f:
data the environment
uses to pick the next
observation and reward.

@ 57 is not usually visible to
the agent.

@ Even if 57 is visible, it
may contain irrelevant
information.




agent state S}

observation action
—_—
O A @ Agent state S?: data the
agent uses to pick the
next action.

@ 5/ is the information used
by RL algorithms.

@ S7 can be any function of
history: S7 := f(H;).




Since we have no control of environment, everything is a random
variable.

A sequence of states (random variables) is Markov if and only if

Pr(Se+1/Se) = Pr(Se41/S1,- -+, St)

@ The future is independent of the past given the present:
St — Ht+1:+oo

@ Once the state is known, the history may be thrown away: the
state is a sufficient statistic of the future.

Is the environment state S Markov? Is the history H; Markov? I




The agent indirectly observes environment.

@ Robot with camera vision, no absolute location: Oy = camera
image at time t.

@ Poker playing agent: O:; = public cards at time t.

Agent must construct its own state representation S7. For
instance:

e Complete history: S7 := H;.

@ Beliefs of environment state:
S = (P(55 =s1),...,P(SF = sn)).

@ Recurrent neural network approximation:
57 = 0(S57_1Ws + O W,).




@ The agent directly observes
environment state:
Or=57=5;.

@ Agent state and environment

' state coincides!

reward | R, @ ...we (the agent) receive R;
and observe S;. . .

action

A

@ ...and thus we decide to do
action Ay ~ (-, S¢). ..

@ ...and because of our action
A, the environment send us
a reward R;;1 and a new
state, that we observe as

Sei1...




@ Predicts what the environment will do next, via a probability
distribution p that predicts the next state and reward:

p(s',rls,a) == Pr(Ser1 =8, Rey1 = r|Se = s, Ar = a).

@ If we have p, we can predict next state and next reward, we
can compute the average next reward, and so on.

@ We assume the Markov property. Exercise: write it.
@ Usually, we don’t know p. For this reason it is called model.

@ Model: our representation of the environment. Can be perfect
(a game with rules) or not (weather forecast).

@ We assume that the environment is time homogeneous: p
does not depend on t. Exercise: is this usually true?




Example: the maze

Start

Goal

Exercise

Discuss this example in terms of the language you have
learned up to now.



© What can we do? Policy and value



Example: a policy for the maze

StrategyPolicy
Arrows represent the policy w: which action to take from
every state.



Example: optimal policy for the maze

Exercise

Choose a state s (any state, not only start) and follow the
policy. Would you call this policy optimal?



Example: values of the optimal policy for the maze

EICCIKIE
-
@ Value v, (s) for every state s,
for the optimal policy 7 of
previous slide.

. .

Exercise |
Choose a state s and compute v, (s) by yourself. If s’ denote
the successor state of s, can the value v, (s’) help with this
computation?



G The never-ending control loop: prediction = improvement



Forecast the future: can you say from each state how much will be
your return? It depends on the policy!

Change the future: can you find a different policy that will give
you a better return?

Change the future: can you find the best policy at all?

State formally the prediction, the improvement and the control
problem.
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Compute the value function for the uniform random policy. I
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Find an improvement of the uniform policy. I
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@ Compute the optimal value function over all possible policies.

@ Given the optimal value v, as above, find the optimal policy.

@ Is the optimal policy unique?




@ Planning, learning and the XX compromise



Two fundamental problems appear in sequential decision making:
planning and learning. J

@ A distribution model of the environment is known.

@ The agent performs computations via the distribution model,
no external interaction with the environment. Average return.

@ The agent improves its policy.

@ The environment is initially unknown.

@ The agent interacts with the environment, hopefully via a
sample model. Empirical mean of return.

@ The agent improves its policy.




Both planning and learning are based on looking ahead to future
events, computing a backed-up value, and then using it as an
update target for an approximate value function.

The heart of both planning and learning is the computation of
value functions for states and actions. )

The heart of both planning and learning is the improvement of the
policy.




@ Value based: no policy
(implicit), value function.

@ Policy based: policy, no value
function.

@ Actor-Critic: policy, value

Value Function i function used to improve the

policy.

@ Model based: policy and/or
value function, model.

@ Model free: policy and/or value
function, no model.

Put in this taxonomy the RL algorithms you will learn. I




@ Reinforcement learning is trial-and-error learning.
@ Take actions that usually give high reward? Exploitation!

@ Take actions that were never explored? Exploration!

@ The policy should make a compromise between exploration
and exploitation.

v

@ Restaurant selection: favourite place or new try?

@ Qil drilling: best location or promising spot?
@ Game playing: best or experimental move?
Suppose you have 10 different slot machines where you can play.

You have 1000€, each play costs 1€. Propose an
exploration /exploitation policy for maximizing your final return.




@ Understand the RL problem, and how RL differs from
supervised learning.

@ Understand reward, return and how they are used to make
decisions.

@ Understand actions, states and rewards in term of
agent/environment interactions.




@ Reinforcement Learning (RL) is concerned with goal-directed
learning and decision-making.

@ In RL an agent learns from experiences it gains by interacting
with the environment. In supervised learning we cannot affect
the environment.

@ In RL rewards are often delayed in time and the agent tries to
maximize a long-term goal. For example, one may need to
make seemingly suboptimal moves to reach a winning position
in a game.

@ An agent interacts with the environment via actions. The
environment answers with states and rewards.
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