
Giochi e Reinforcement Learning
= GioReL su FAD

1 Introduction.
2 Dynamic Programming (DP): planning.

1 Markov Decision Processes (MDP).
2 Prediction, improvement, control: policy iteration.
3 Value iteration.

3 Reinforcement Learning (RL): learning in the tabular case.

1 Model-free prediction: Monte Carlo (MC) methods.
2 Model-free prediction: Temporal Difference (TD)

methods.
3 Model-free control: MC methods.
4 Model-free control: TD methods.
5 On-policy vs off-policy methods: SARSA vs Q-learning.

4 Multi-armed bandit. Very likely.
5 MCTS. Likely.
6 Reinforcement Learning (RL): learning in the function

approximation case. Maybe.

Acknowledgements, sources and links

Both the organization and the content of the slides are extracted
from the following sources:

Reinforcement Learning: An Introduction. Richard S. Sutton
and Andrew G. Barto, second edition, 2018.
UCL Course on RL, videos and slides. David Silver, 2015.
Tutorial: Introduction to Reinforcement Learning with
Function Approximation. Richard S. Sutton, 2016.
Implementation of Reinforcement Learning algorithms. Denny
Britz, GitHub project, 2016 (updated in 2018).

http://incompleteideas.net/book/RLbook2018.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://www.youtube.com/watch?v=ggqnxyjaKe4
https://www.youtube.com/watch?v=ggqnxyjaKe4
https://github.com/dennybritz/reinforcement-learning

Introduction: Who, What, When, Where, Why,
hoW

1 What is Reinforcement Learning?

2 Examples

3 The RL setup: problem and actors

4 What do we know? State, observability and distribution model

5 What can we do? Policy and value

6 The never-ending control loop: prediction
 improvement

7 Planning, learning and the XX compromise

RL is not SL, RL is not UL

Machine
Learning

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

RL characteristics

What is RL?
Agent-oriented learning: an agent learns by interacting with
an environment to achieve a goal.
The agent learns by trial and error, evaluating a delayed
feedback (reward).
The kind of machine learning most like natural learning.
Learning that can tell for itself when it is right or wrong.

RL vs SL and UL
RL is not completely supervised: only reward.
RL is not completely unsupervised: there is reward.
Time matters: sequential data.
Time matters: actions change possible future.

1 What is Reinforcement Learning?

2 Examples

3 The RL setup: problem and actors

4 What do we know? State, observability and distribution model

5 What can we do? Policy and value

6 The never-ending control loop: prediction
 improvement

7 Planning, learning and the XX compromise

Examples

Real world applications of RL (original article)
Resources management in computer clusters.
Traffic light control.
Robotics.
Web system configuration.
Chemistry.
Personalized recommendations.
Bidding and advertising.

https://towardsdatascience.com/applications-of-reinforcement-learning-in-real-world-1a94955bcd12

Examples

More specific tasks with their goal
Adaptive controller: adjusts parameters of a petroleum
refinery’s operation in real time.
Gazelle calf. Learn to run.
Trash-collecting mobile robot. Collect trash.
Preparing breakfast. Feed yourself.
Chess player. Win (or enjoy).

Examples

Games
AlphaGo’s family.
StarCraft II. Very recent achievement, 19 Dec 2018.
Atari games. Very recent achievement, 28 Sep 2018.
TD-Gammon.

Enjoy few minutes of video
Atari:
https://www.youtube.com/watch?v=V1eYniJ0Rnk&vl=en

AlphaGo:
https://www.youtube.com/watch?v=8dMFJpEGNLQ

StarCraft: https://youtu.be/UuhECwm31dM

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://openreview.net/forum?id=r1lyTjAqYX
https://www.youtube.com/watch?v=V1eYniJ0Rnk&vl=en
https://www.youtube.com/watch?v=8dMFJpEGNLQ
https://youtu.be/UuhECwm31dM

1 What is Reinforcement Learning?

2 Examples

3 The RL setup: problem and actors

4 What do we know? State, observability and distribution model

5 What can we do? Policy and value

6 The never-ending control loop: prediction
 improvement

7 Planning, learning and the XX compromise

The RL problem
Common points in examples

Trying to reach a goal.
Interactions: active decision-making agent vs environment.
Uncertainty about the environment.
Effects of actions cannot be fully predicted: adaptation
required (learning).

The RL reward hypothesis
All goals can be described by the maximization of expected
cumulative reward (the value).

Is it true? Interesting analysis at
http://incompleteideas.net/rlai.cs.ualberta.ca/
RLAI/rewardhypothesis.html.
Related with the expected utility hypothesis from von
Neumann-Morgenstern utility theory.

http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html
http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html

The RL problem

RL main task
Decision problem: we would like to choose actions that maximize
the return, i.e. the total future reward.

Sequential decision making
Actions may have long term consequences.

Uncertainty
The best we can aim for is maximizing the value, i.e. the expected
total future reward.

Exercise
Find an example of a deterministic task, that is, a task where you
know the outcome of your actions.

The RL problem

To be greedy can be wrong
A financial investment (may take months to mature).
Refuelling a helicopter (might prevent a crash in several
hours).
Blocking opponent moves (might help winning chances many
moves from now).

Exercise
Discuss the difference between return and value.

The RL problem

Examples of reward
Games: RT := −1, 0,+1 (win, draw, lose). More generally,
RT can be the final score.
Games: RT := 0,+1 (win, lose). In this case, the value is the
probability of winning. Why?
Atari games: Rt is the immediate score increment at step t.
Walking robot: Rt := +1 for every step he doesn’t fall.
https://www.youtube.com/watch?v=gn4nRCC9TwQ

Financial investment: Rt is the money increment in the last
time step in portfolio.
Maze and Gridworld: +100 for reaching the exit, 0 otherwise.
Wrong. Why?

Maze and Gridworld: −1 for every move. Correct. Why?

https://www.youtube.com/watch?v=gn4nRCC9TwQ

The RL problem

Examples of reward
Games: RT := −1, 0,+1 (win, draw, lose). More generally,
RT can be the final score.
Games: RT := 0,+1 (win, lose). In this case, the value is the
probability of winning. Why?
Atari games: Rt is the immediate score increment at step t.
Walking robot: Rt := +1 for every step he doesn’t fall.
https://www.youtube.com/watch?v=gn4nRCC9TwQ

Financial investment: Rt is the money increment in the last
time step in portfolio.
Maze and Gridworld: +100 for reaching the exit, 0 otherwise.
Wrong. Why?
Maze and Gridworld: −1 for every move. Correct. Why?

https://www.youtube.com/watch?v=gn4nRCC9TwQ

First actor: the agent

A never-ending loop
. . . we (the agent) receive Rt and observe Ot . . .
. . . we choose the action At ∼ π(·, f (Ot ,Rt ,At−1,Ot−1,Rt−1, . . .)). . .
. . . and because of our action At , the environment send us a reward
Rt+1 and a new state, that we observe as Ot+1. . .

First actor: the agent

A never-ending loop
. . . we (the agent) receive Rt and observe Ot . . .
. . . we choose the action At ∼ π(·, f (history)). . .
. . . and because of our action At , the environment send us a reward
Rt+1 and a new state, that we observe as Ot+1. . .

We are not alone! Second actor: the environment

Agent, step t
Receives observation Ot .
Receives scalar reward Rt .
Computes his own state
Sa

t .
Executes action At .

Environment, step t
Receives action At .
Computes his own state
Se

t+1.
Emits observation Ot+1.
Emits scalar reward Rt+1.

1 What is Reinforcement Learning?

2 Examples

3 The RL setup: problem and actors

4 What do we know? State, observability and distribution model

5 What can we do? Policy and value

6 The never-ending control loop: prediction
 improvement

7 Planning, learning and the XX compromise

History, agent state and environment state

Notation
History: the sequence of observations, actions, rewards up to
time step t:

Ht := O1,R1,A1, . . . ,At−1,Ot ,Rt .

The agent selects actions, and the environment answers with
observations and rewards.
State: the information used (by the agent and the
environment) to determine what happens next.
State is naturally a sequence St .
Agent state is a function of history: St := f (Ht).
Environment state Se

t is different from agent state Sa
t .

Environment state

Environment, step t
Environment state Se

t :
data the environment
uses to pick the next
observation and reward.
Se

t is not usually visible to
the agent.
Even if Se

t is visible, it
may contain irrelevant
information.

Agent state

Agent, step t
Agent state Sa

t : data the
agent uses to pick the
next action.
Sa

t is the information used
by RL algorithms.
Sa

t can be any function of
history: Sa

t := f (Ht).

Markov state
Uncertainty
Since we have no control of environment, everything is a random
variable.

Definition
A sequence of states (random variables) is Markov if and only if

Pr(St+1|St) = Pr(St+1|S1, . . . ,St)

The future is independent of the past given the present:

St → Ht+1:+∞

Once the state is known, the history may be thrown away: the
state is a sufficient statistic of the future.

Exercise
Is the environment state Se

t Markov? Is the history Ht Markov?

Partially observable environments

The agent indirectly observes environment.
Robot with camera vision, no absolute location: Ot = camera
image at time t.
Poker playing agent: Ot = public cards at time t.

Agent must construct its own state representation Sa
t . For

instance:
Complete history: Sa

t := Ht .
Beliefs of environment state:

Sa
t := (P(Se

t = s1), . . . ,P(Se
t = sn)).

Recurrent neural network approximation:
Sa

t := σ(Sa
t−1Ws + OtWo).

Fully observable environments

The agent directly observes
environment state:
Ot = Sa

t = Se
t .

Agent state and environment
state coincides!

A never-ending loop
. . . we (the agent) receive Rt
and observe St . . .
. . . and thus we decide to do
action At ∼ π(·, St). . .
. . . and because of our action
At , the environment send us
a reward Rt+1 and a new
state, that we observe as
St+1. . .

Structure of an RL environment

Distribution model
Predicts what the environment will do next, via a probability
distribution p that predicts the next state and reward:

p(s ′, r |s, a) := Pr(St+1 = s ′,Rt+1 = r |St = s,At = a).

If we have p, we can predict next state and next reward, we
can compute the average next reward, and so on.

Remarks
We assume the Markov property. Exercise: write it.
Usually, we don’t know p. For this reason it is called model.
Model: our representation of the environment. Can be perfect
(a game with rules) or not (weather forecast).
We assume that the environment is time homogeneous: p
does not depend on t. Exercise: is this usually true?

Example: the maze

Exercise
Discuss this example in terms of the language you have
learned up to now.

1 What is Reinforcement Learning?

2 Examples

3 The RL setup: problem and actors

4 What do we know? State, observability and distribution model

5 What can we do? Policy and value

6 The never-ending control loop: prediction
 improvement

7 Planning, learning and the XX compromise

Example: a policy for the maze

StrategyPolicy
Arrows represent the policy π: which action to take from
every state.

Example: optimal policy for the maze

Exercise
Choose a state s (any state, not only start) and follow the
policy. Would you call this policy optimal?

Example: values of the optimal policy for the maze

Value vπ(s) for every state s,
for the optimal policy π of
previous slide.

Exercise
Choose a state s and compute vπ(s) by yourself. If s ′ denote
the successor state of s, can the value vπ(s ′) help with this
computation?

1 What is Reinforcement Learning?

2 Examples

3 The RL setup: problem and actors

4 What do we know? State, observability and distribution model

5 What can we do? Policy and value

6 The never-ending control loop: prediction
 improvement

7 Planning, learning and the XX compromise

Prediction, improvement and control

The prediction problem in RL
Forecast the future: can you say from each state how much will be
your return? It depends on the policy!

The improvement problem in RL
Change the future: can you find a different policy that will give
you a better return?

The control problem in RL
Change the future: can you find the best policy at all?

Exercise
State formally the prediction, the improvement and the control
problem.

Gridworld example: prediction

Exercise
Compute the value function for the uniform random policy.

Gridworld example: improvement

Exercise
Find an improvement of the uniform policy.

Gridworld example: optimal control

Exercise
Compute the optimal value function over all possible policies.
Given the optimal value v∗ as above, find the optimal policy.
Is the optimal policy unique?

1 What is Reinforcement Learning?

2 Examples

3 The RL setup: problem and actors

4 What do we know? State, observability and distribution model

5 What can we do? Policy and value

6 The never-ending control loop: prediction
 improvement

7 Planning, learning and the XX compromise

Two ways to solve the RL problem: planning and learning

Two fundamental problems appear in sequential decision making:
planning and learning.

Planning (dynamic programming)
A distribution model of the environment is known.
The agent performs computations via the distribution model,
no external interaction with the environment. Average return.
The agent improves its policy.

Learning (reinforcement learning)
The environment is initially unknown.
The agent interacts with the environment, hopefully via a
sample model. Empirical mean of return.
The agent improves its policy.

Planning and learning: similarities

Look ahead
Both planning and learning are based on looking ahead to future
events, computing a backed-up value, and then using it as an
update target for an approximate value function.

Value functions evaluation
The heart of both planning and learning is the computation of
value functions for states and actions.

Policy improvement
The heart of both planning and learning is the improvement of the
policy.

Categorizing RL agents

Value based: no policy
(implicit), value function.
Policy based: policy, no value
function.
Actor-Critic: policy, value
function used to improve the
policy.

Model based: policy and/or
value function, model.
Model free: policy and/or value
function, no model.

Exercise for the future
Put in this taxonomy the RL algorithms you will learn.

Exploration vs exploitation: the eternal dilemma
Old and certain, or new but unsure?

Reinforcement learning is trial-and-error learning.
Take actions that usually give high reward? Exploitation!
Take actions that were never explored? Exploration!
The policy should make a compromise between exploration
and exploitation.

Examples
Restaurant selection: favourite place or new try?
Oil drilling: best location or promising spot?
Game playing: best or experimental move?

Exercise: multi-armed bandit
Suppose you have 10 different slot machines where you can play.
You have 1000e, each play costs 1e. Propose an
exploration/exploitation policy for maximizing your final return.

Wrapping up

Learning goals
Understand the RL problem, and how RL differs from
supervised learning.
Understand reward, return and how they are used to make
decisions.
Understand actions, states and rewards in term of
agent/environment interactions.

Wrapping up

What we (hopefully) have learnt
Reinforcement Learning (RL) is concerned with goal-directed
learning and decision-making.
In RL an agent learns from experiences it gains by interacting
with the environment. In supervised learning we cannot affect
the environment.
In RL rewards are often delayed in time and the agent tries to
maximize a long-term goal. For example, one may need to
make seemingly suboptimal moves to reach a winning position
in a game.
An agent interacts with the environment via actions. The
environment answers with states and rewards.

	What is Reinforcement Learning?
	Examples
	The RL setup: problem and actors
	What do we know? State, observability and distribution model
	What can we do? Policy and value
	The never-ending control loop: prediction improvement
	Planning, learning and the XX compromise

