Statistica della Formazione Slides 2

A.A. 2020-2021

Docente: ANNA LINA SARRA

Modulo 1: elementi di statistica descrittiva

- Distribuzioni statistiche
- Rappresentazioni grafiche

Distribuzioni statistiche

- L'effetto dell'operazione di determinazione della modalità con cui ognuno dei caratteri si presenta in ciascuna unità del collettivo determina la "distribuzione" del collettivo secondo i caratteri considerati.
- La distribuzione indica come le <u>modalità</u> dei <u>caratteri</u> si distribuiscono nelle unità del collettivo.

Distribuzioni disaggregate

ID	GENERE	TIPO DI DISTURBO
2	MASCHIO	DISLESSIA
3	MASCHIO	DISGRAFIA
7	FEMMINA	DISCALCULIA
9	FEMMINA	DISCALCULIA
10	FEMMINA	DISGRAFIA
12	FEMMINA	DISGRAFIA
15	FEMMINA	DISLESSIA
16	FEMMINA	DISGRAFIA
18	FEMMINA	DISGRAFIA
19	FEMMINA	DISCALCULIA

Distribuzioni di frequenza

	numero
MASCHIO	2
FEMMINA	8
DISLESSIA	2
DISGRAFIA	5
DISCALCULIA	3

Distribuzioni statistiche disaggregate

Si consideri un collettivo statistico di N unità, dove si sia osservato il carattere X.

Si chiama distribuzione statistica disaggregata secondo il carattere *X* l'insieme delle osservazioni (rappresentate da numeri o da espressioni verbali) relative alle *N* unità del collettivo.

In simboli, la distribuzione disaggregata sarà indicata come $x_1, x_2, ..., x_N$ dove x_1 è l'osservazione relativa all'unità identificata dal numero 1, x_2 l'osservazione relativa all'unità identificata dal numero 2 e così via.

Esempi di distribuzioni statistiche disaggregate

SOGGETTO	GENERE	TIPO DI DISTURBO
1	MASCHIO	DISGRAFIA
2	MASCHIO	DISCALCULIA
3	MASCHIO	DISGRAFIA
4	MASCHIO	DISLESSIA
5	FEMMINA	DISLESSIA
6	FEMMINA	DISLESSIA
7	MASCHIO	DISGRAFIA
8	MASCHIO	DISCALCULIA
9	MASCHIO	DISCALCULIA
10	FEMMINA	DISGRAFIA
11	MASCHIO	DISCALCULIA
12	MASCHIO	DISCALCULIA
13	FEMMINA	DISLESSIA
14	FEMMINA	DISLESSIA
15	MASCHIO	DISCALCULIA
16	MASCHIO	DISLESSIA
17	MASCHIO	DISCALCULIA
18	FEMMINA	DISLESSIA
19	MASCHIO	DISCALCULIA
20	FEMMINA	DISLESSIA

Distribuzioni di frequenze

• L'operazione di raggruppamento delle unità statistiche viene realizzata mediante la classificazione o lo spoglio dei dati.

Per frequenza si intende il numero di volte che una data modalità si presenta nel collettivo statistico.

Si chiama distribuzione di frequenze lo schema con cui si associa a ciascuna modalità del carattere X la rispettiva frequenza.

Modalità (x _i)	<i>Frequenza</i> (n _i)
x_{1}	$n_{\scriptscriptstyle{1}}$
x_{2}	n ₂
:	:
X_k	n _k
Totale	N

$$\sum_{i=1}^{k} n_i = n_1 + n_2 + \dots + n_k = N$$

 n_1 , n_2 ,..., n_k sono le frequenze delle modalità x_1 , x_2 ,..., x_k

Frequenze relative e percentuali

• frequenze relative o proporzioni: si ottengono rapportando le frequenze assolute al totale delle unità, N. Indicheremo con $f_1, f_2, ..., f_k$ tali quantità, essendo

$$f_i = \frac{\text{frequenza della modalità } x_i}{\text{numero totale di osservazioni}} = \frac{n_i}{N}, i = 1, 2, ..., k.$$

• frequenze percentuali $p_1, p_2, ..., p_k$: si ottengono moltiplicando per 100 le frequenze relative:

$$p_i = f_i *100, i=1,2,...,k$$

$$\sum_{i=1}^{k} f_i = f_1 + f_2 + \dots + f_k = 1$$

$$\sum_{i=1}^{k} p_i = p_1 + p_2 + \dots + p_k = 100$$

Esempi di distribuzioni di frequenze assolute, relative e percentuali

	Genere			
	X _i	n _i		
X ₁	Femmine	7 r	1 1	
X ₂	Maschi	13 r	า า _ว	
_	Totale	20 _N	١	

G	eı	1e	re
U	eı	1e	re

	X _i	f_i	
X_1	Femmine	0.35	f_1
т Х ₂	Maschi	0.65	f_2
_	Totale	1	_

p _i	
35	$p_{\scriptscriptstyle 1}$
65	p_2
100	_

	Disturbo		
	X _i	n _i	
X ₁	Discalculia	8	n ₁
	Disgrafia	4	n_2
X ₃	Dislessia	8	n ₃
J	Totale	20	J

	X _i	f _i		p _i	
X ₁	Discalculia	0.4	f_1	40	$p_{\scriptscriptstyle{1}}$
X ₂	Disgrafia	0.2	f_2	20	p_2
X ₃	Dislessia	0.4	f_3	40	p_3
	Totale	1		100	_

Esempio di distribuzione di frequenze assolute, relative e percentuali

Alunni con DSA per tipologia di disturbo-a.s. 2017/2018

	Frequenza	frequenza	frequenza
Tipologia di disturbo	assoluta	relativa	percentuale
Dislessia	177212	0,407	40,7
Disgrafia	79261	0,182	18,2
Disortografia	92134	0,212	21,2
Discalculia	86645	0,199	19,9
TOTALE	435252	1	100

Fonte Istat

Frequenze cumulate

Consideriamo una distribuzione di frequenze secondo un carattere a modalità ordinabili.

• Si chiamano frequenze cumulate le quantità

$$N_i = n_1 + n_2 + ... + n_i$$
, $i = 1, 2, ..., k$.

Per ogni dato i, N_i rappresenta il numero delle unità del collettivo nelle quali il carattere X assume un valore non superiore a x_i

• Si chiamano frequenze relative cumulate i rapporti

$$F_i = \frac{\text{frequenza cumulata fino a } x_i}{\text{numero totale di osservazioni}} = \frac{N_i}{N}$$
, $i = 1, 2, ..., k$.

• frequenze percentuali cumulate: si ottengono moltiplicando per 100 le frequenze relative cumulate

Esempio di frequenze cumulate (1)

	N.of	
ID	previous	education
	offenses	
1	1	high edu
2		low sec
3	2	primary or less
4	10	primary or less
5	6	high edu
6	3	low sec
7	3	primary or less
8	5	high edu
9	4	low sec
10	8	high edu
11	7	low sec
12	4	primary or less
13	8	primary or less
14	4	high edu
15	6	primary or less
16	9	upp sec
17	9	low sec
18	3	upp sec
19	9	high edu

		fred	quenza cum	ulata
N.of previous offenses commited	frequenza assoluta	assoluta	relativa	percentuale
1	1	1	0.0526	5.26
2	2	3	0.1579	15.79
3	3	6	0.3158	31.58
4	3	9	0.4737	47.37
5	1	10	0.5263	52.63
6	2	12	0.6316	63.16
7	1	13	0.6842	68.42
8	2	15	0.7895	78.95
9	3	18	0.9474	94.74
10	1	19	1	100
totale	19			

Esempio di frequenze cumulate (2)

ID	N.of previous offenses	education
1		high edu
2		low sec
3	2	primary or less
4	10	primary or less
5	6	high edu
6	3	low sec
7	3	primary or less
8	5	high edu
9	4	low sec
10	8	high edu
11	7	low sec
12	4	primary or less
13	8	primary or less
14	4	high edu
15	6	primary or less
16	9	upp sec
17	9	low sec
18	3	upp sec
19	9	high edu

		free	frequenza cumulata						
Titolo di studio	frequenza assoluta	assoluta	relativa	percentuale					
primary or less	6	6	0.3158	31.58					
low sec	5	11	0.5789	57.89					
upp sec	2	13	0.6842	68.42					
high edu	6	19	1.0000	100.00					
totale	19								

Distribuzioni doppie

- Considerando congiuntamente due colonne della matrice dei dati,
 l'insieme delle coppie di modalità dei due caratteri che così si osservano costituisce una distribuzione doppia disaggregata
- Le distribuzioni doppie di **frequenze** sono il risultato dello spoglio dei dati basato su una preliminare definizione delle modalità e delle eventuali classi per entrambi i caratteri.

Esempio di distribuzione doppia (1)

SOGGETTO	GENERE	TIPO DI DISTURBO
1	MASCHIO	DISGRAFIA
2	FEMMINA	DISCALCULIA
3	FEMMINA	DISGRAFIA
4	MASCHIO	DISLESSIA
5	MASCHIO	DISLESSIA
6	FEMMINA	DISLESSIA
7	MASCHIO	DISGRAFIA
8	MASCHIO	DISCALCULIA
9	MASCHIO	DISCALCULIA
10	FEMMINA	DISGRAFIA
11	MASCHIO	DISCALCULIA
12	MASCHIO	DISCALCULIA
13	MASCHIO	DISLESSIA
14	MASCHIO	DISLESSIA
15	FEMMINA	DISCALCULIA
16	MASCHIO	DISLESSIA
17	FEMMINA	DISCALCULIA
18	FEMMINA	DISLESSIA
19	MASCHIO	DISCALCULIA
20	MASCHIO	DISLESSIA

	Ger	nere	
Tipo di disturbo	Femmina	Maschio	Totale
Discalculia	3	5	8
Disgrafia	2	2	4
Dislessia	2	6	8
Totale	7	13	20

Esempio di distribuzione doppia (2)

SOGGETTO	GENERE	ORDINE DI SCUOLA
1	MASCHIO	INFANZIA
2	MASCHIO	SEC. I GRADO
3	MASCHIO	INFANZIA
4	MASCHIO	SEC. I GRADO
5	MASCHIO	SEC. I GRADO
6	MASCHIO	SEC. I GRADO
7	MASCHIO	PRIMARIA
8	MASCHIO	SEC. I GRADO
9	MASCHIO	INFANZIA
10	MASCHIO	INFANZIA
11	FEMMINA	INFANZIA
12	FEMMINA	INFANZIA
13	FEMMINA	INFANZIA
14	FEMMINA	INFANZIA
15	FEMMINA	PRIMARIA
16	FEMMINA	INFANZIA
17	FEMMINA	INFANZIA
18	FEMMINA	PRIMARIA
19	FEMMINA	INFANZIA

	GEN	GENERE				
ORDINE SCUOLA	FEMMINA	MASCHIO	Totale			
INFANZIA	7	4	11			
PRIMARIA	2	1	3			
SEC.I GRADO	0	5	5			
Totale	9	10	19			

Distribuzioni multiple

In generale si parla di:

- distribuzione tripla, se si considerano congiuntamente tre caratteri (tre
 colonne della matrice dei dati); distribuzione quadrupla, se si considerano
 congiuntamente quattro caratteri, e così via
- anche in questo caso, le distribuzioni si distinguono in disaggregate e di frequenze, a seconda che i dati si considerino allo stato grezzo o che si sia proceduto allo spoglio

Serie storiche

- Si ha una serie storica quando i dati statistici di interesse vengono associati a modalità temporali
- I dati statistici possono riguardare sia fenomeni di movimento (*flusso*) che fenomeni di stato (*stock*)

Esempio serie storica (fenomeno di movimento)

	a.s. 1997/98			a.	s. 1998/99		a.s. 1999/00 a.s. 2000/01					
	Alunni	Classi	Alunni/ classi	Alunni	Classi	Alunni/ classi	Alunni	Classi	Alunni/ classi	Alunni	Classi	Alunni/ classi
Γotale nazionale	7.599.110	378.612	20.1	7.540.183	372.317	20,3	7.542.232	371.355	20,3	7.561.780	371.416	20.

Fonte Istat: Alunni, classi e rapporto alunni/classi

Esempio serie storica (fenomeno di stato)

Anno	2005	2006	2007	2008	2009
N. di residenti	58462	58752	59131	59616	60045

Fonte Istat Popolazione residente in Italia dal 2005 al 2009

Esempi di serie storiche

Serie Storica1-Alunni con cittadinanza non italiana (valori assoluti e percentuali) -A.S. 1983-84/2015-16

		Studenti con cittadinanza non
	Totale studenti con	italiana in rapporto alla
	cittadinanza non	popolazione scolastica
Anni scolastici	italiana	totale
	v.a.	%
1983/1984	6.104	0,06
1984/1985	6.468	0,06
1985/1986	7.050	0,07
1986/1987	7.424	0,07
1987/1988	8.967	0,09
1988/1989	11.791	0,12
1989/1990	13.668	0,14
1990/1991	18.794	0,19
1991/1992	25.756	0,27
1992/1993	30.546	0,32
1993/1994	37.478	0,41
1994/1995	43.876	0,47
1995/1996	50.322	0,56
1996/1997	57.595	0,66
1997/1998	70.657	0,81
1998/1999	85.522	1,1
1999/2000	119.679	1,47
2000/2001	147.406	1,70
2001/2002	196.414	2,20
2002/2003	239.808	2,70
2003/2004	307.141	3,50
2004/2005	370.803	4,20
2005/2006	431.211	4,80
2006/2007	501.420	5,60
2007/2008	574.133	6,41
2008/2009	629.360	7,03
2009/2010	673.800	7,52
2010/2011	710.263	7,86
2011/2012	755.939	8,42
2012/2013	786.630	8,87
2013/2014	803.053	9,00
2014/2015	814.208	9,20
2015/2016	814.851	9,23

Serie territoriali

• Si ha una serie territoriale quando i dati vengono associati a modalità rappresentate da entità territoriali

Esempio serie territoriale

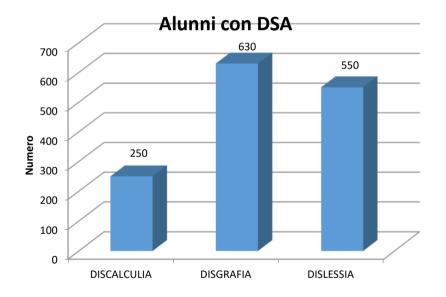
Ripartizione territoriale	Alunni con DSA in % di alunni per area territoriale nella scuola primaria
Italia Nord-Occidentale	2.6
Italia Nord-Orientale	2.1
Italia Centrale	2.4
Italia Meridionale	1.1
Italia	2.0

Esempi di Serie territoriali

Tavola – Alunni con cittadinanza italiana e non italiana per regione – A.S. 2013/2014 e 2015/2016

Regioni	Alunni co	n cittadinanza	italiana	Alunni con cittadinanza non italiana			alunni italiani su alunni stranieri		
	2015/2016	2013/2014	differenza	2015/2016	2013/2014	differenza	2015/2016	2013/2014	
Piemonte	514.413	516.573	-2.160	75.789	75.269	520	6,8	6,9	
Valle d'Aosta	17.135	17.001	134	1.402	1.591	-189	12,2	10,7	
Lombardia	1.207.053	1.212.478	-5.425	203.979	197.193	6.786	5,9	6,1	
Trentino A.A.	144.234	146.931	-2.697	18.433	17.709	724	7,8	8,3	
Veneto	620.308	623.504	-3.196	91.853	92.924	-1.071	6,8	6,7	
Friuli V.G.	142.156	142.964	-808	18.960	19.018	-58	7,5	7,5	
Liguria	171.972	174.224	-2.252	23.388	23.011	377	7,4	7,6	
Emilia Romagna	520.875	516.075	4.800	96.213	93.434	2.779	5,4	5,5	
Toscana	444.028	442.632	1.396	67.004	64.348	2.656	6,6	6,9	
Umbria	106.173	106.086	87	16.945	17.341	-396	6,3	6,1	
Marche	196.061	196.215	-154	25.439	26.543	-1.104	7,7	7,4	
Lazio	751.660	753.722	-2.062	77.109	77.062	47	9,7	9,8	
Abruzzo	171.138	174.272	-3.134	13.260	13.245	15	12,9	13,2	
Molise	40.304	41.926	-1.622	1.450	1.486	-36	27,8	28,2	
Campania	985.200	1.011.845	-26.645	22.492	21.779	713	43,8	46,5	
Puglia	621.463	642.398	-20.935	16.557	16.542	15	37,5	38,8	
Basilicata	81.823	84.579	-2.756	2.625	2.468	157	31,2	34,3	
Calabria	290.345	299.853	-9.508	12.580	12.921	-341	23,1	23,2	
Sicilia	769.405	791.680	-22.275	24.319	24.128	191	31,6	32,8	
Sardegna	216.296	222.217	-5.921	5.054	5.041	13	42,8	44,1	
Italia	8.012.042	8.117.175	-105.133	814.851	803.053	11.798	9,8	10,1	

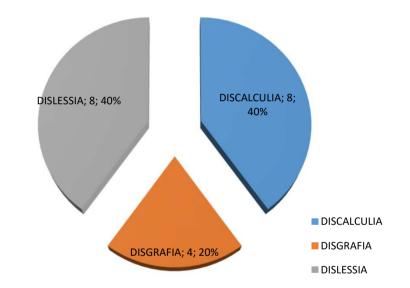
Rappresentazioni grafiche


Per ogni distribuzione statistica, è possibile individuare la rappresentazione grafica più adatta, la soluzione, cioè, che concilia correttezza metodologica ed efficacia informativa

Scala nominale: grafico a nastri

Le distribuzioni di variabili nominali (serie sconnesse) vengono generalmente rappresentate con grafici di tipo areale, in cui alle modalità del carattere si fanno corrispondere figure geometriche (rettangoli, quadrati, settori circolari ecc.) con aree proporzionali alle grandezze da rappresentare. Le figure geometriche più spesso utilizzate sono i rettangoli (nastri orizzontali o verticali).

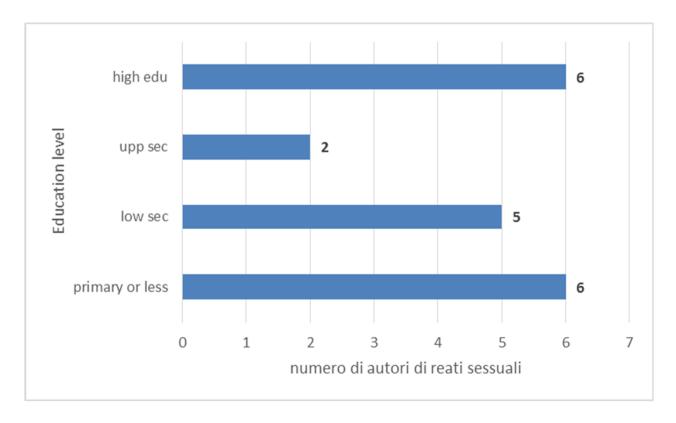
TIPO DI DISTURBO	numero
DISCALCULIA	250
DISGRAFIA	630
DISLESSIA	550
Totale complessivo	1430


<u>L'aspetto visivo del grafico rimane</u> <u>immutato se si utilizzano le frequenze</u> relative o percentuali

Scala nominale: grafico a settori circolari o a torta

Una rappresentazione grafica alternativa, utilizzabile quando il numero delle modalità non è elevato, è il grafico a settori circolari, in cui le frequenze o le quantità associate alle varie modalità del carattere vengono rappresentate con le aree dei settori circolari in cui è suddiviso un cerchio

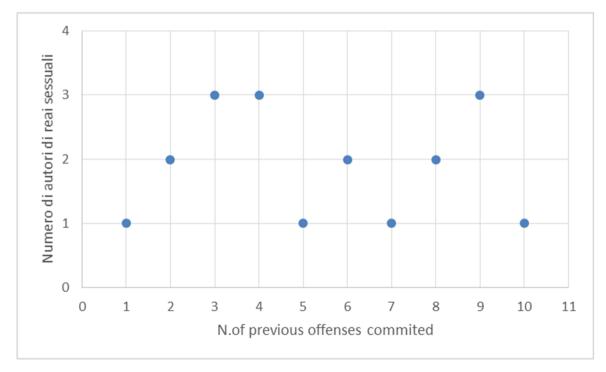
Tipo di disturbo	frequenza assoluta	frequenza relativa	angolo
x_i	n_i	f_i	α_i
DISLESSIA	8	0.4	144
DISGRAFIA	4	0.2	72
DISCALCULIA	8	0.4	144
Totale	20	1	360



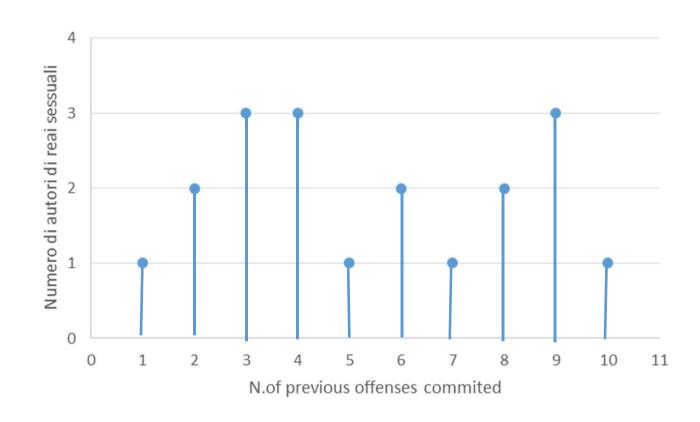
$$n_i$$
: $N = \alpha_i$: 360°
 $\alpha_i = \frac{n_i}{N} \cdot 360^\circ = f_i \cdot 360^\circ$

Scala ordinale: grafico a nastri con modalità ordinate

Le distribuzioni di variabili ordinali vengono generalmente rappresentate con grafici a nastri orizzontali o verticali in cui le modalità devono essere ordinate


	frequenza
Education level	assoluta
primary or less	6
low sec	5
upp sec	2
high edu	6
totale	19

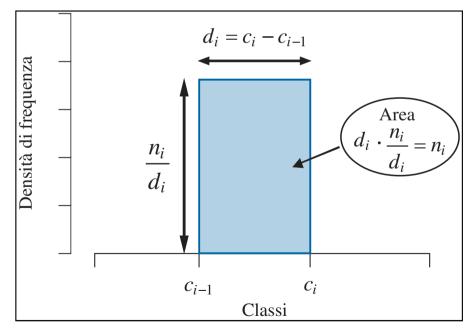
Caratteri quantitativi discreti: diagramma a punti


- La rappresentazione grafica più idonea per una distribuzione di frequenze secondo un carattere discreto è quella <u>cartesiana</u>
- Sull'asse delle ascisse vengono poste le modalità $x_1, x_2, ..., x_k$, sull'asse delle ordinate le frequenze corrispondenti $n_1, n_2, ..., n_k$
- La rappresentazione grafica va sotto il nome di diagramma a punti

N.of	
previous	frequenza
offenses	assoluta
commited	
1	1
2	2
3	3
4	3
5	1
6	2
7	1
8	2
9	3
10	1
totale	19

Caratteri quantitativi discreti: diagramma ad aste

N.of	
previous	frequenza
offenses	assoluta
commited	
1	1
2	2
3	3
4	3
5	1
6	2
7	1
8	2
9	3
10	1
totale	19


Caratteri quantitativi continui divisi in intervalli

La rappresentazione grafica più appropriata è l'istogramma in cui l'area del rettangolo rappresenta la frequenza assoluta o relativa della corrispondente classe.

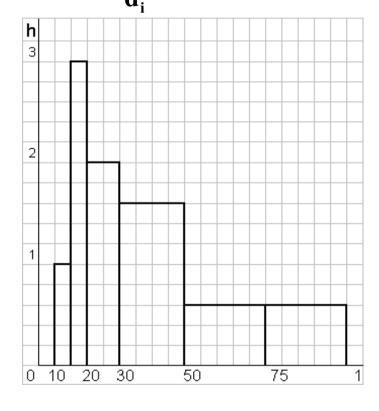
L'istogramma si ottiene ponendo sull'asse delle ascisse gli estremi di classe c_0 , c_1 , ..., c_k e disegnando per ogni classe (c_{i-1}, c_i) , i = 1, 2, ..., k, un **rettangolo** avente per base il segmento dell'asse delle ascisse di estremi c_{i-1} e c_i e per altezza la **densità di frequenza** n_i/d_i , dove d_i è l'ampiezza di classe

Classe (<i>c_{i-1}-c_i</i>)	Frequenza (n _i)
c ₀ - c ₁	n ₁
c ₁ - c ₂	n ₂
:	;
C _{k-1} - C _k	n _k
Totale	N

Si chiama distribuzione di frequenze di un carattere X suddiviso in classi lo schema con cui si associa a ciascuna classe la rispettiva frequenza

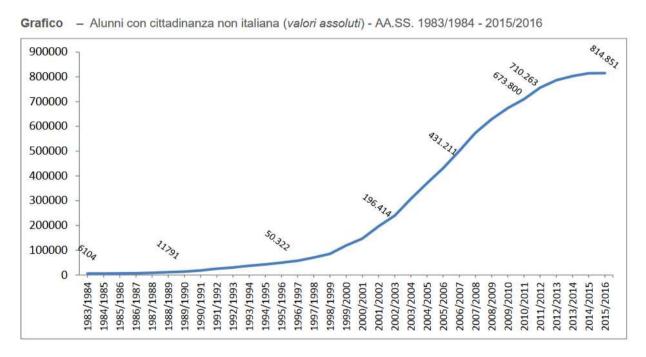
Cap. 3-27

Istogramma: esempio


Classi di peso (in Kg)	Frequenza assoluta	Ampiezza di classe	Densità di frequenza
$\mathbf{c}_{i-1} - \mathbf{c}_{i}$	n _i	d _i	h _i
10 15	5	5	1
15 20	15	5	3
20 30	20	10	2
30 50	30	20	1,5
50 75	15	25	0,6
75 100	15	25	0,6
Totale	100		

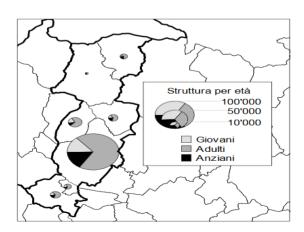
Nell'istogramma si costruiscono dei rettangoli la cui area è proporzionale alla frequenza della classe.

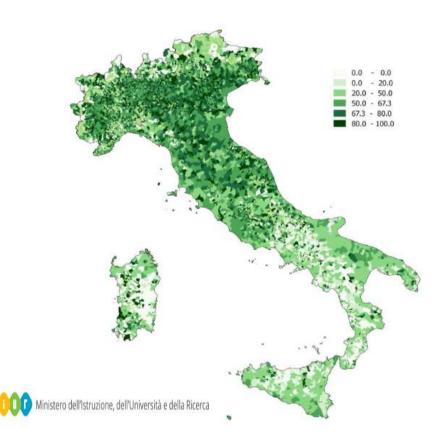
La base è data dall'ampiezza di classe, l'altezza dalla densità di frequenza

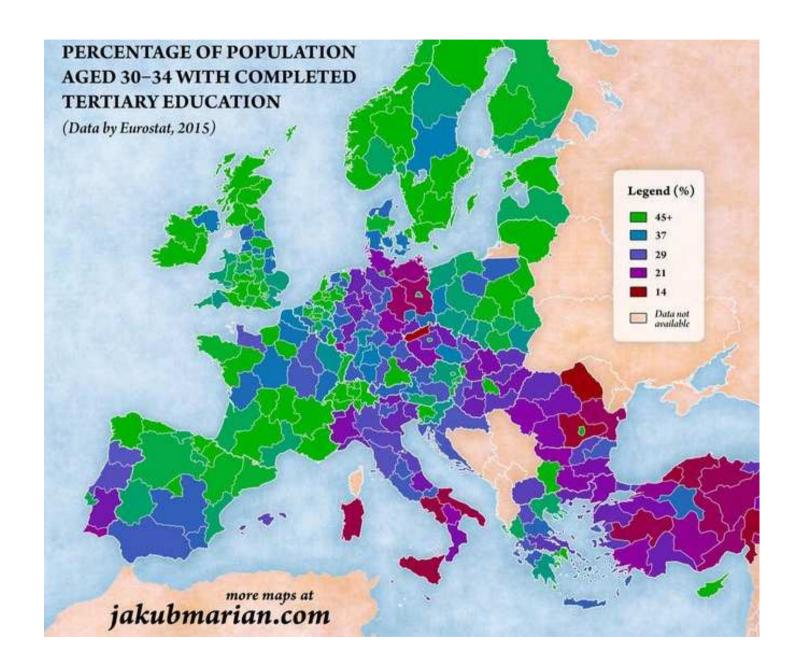

$$\mathbf{d}_{i} = \mathbf{c}_{i-1} - \mathbf{c}_{i}$$

$$\mathbf{h}_{i} = \frac{\mathbf{n}_{i}}{\mathbf{d}}$$

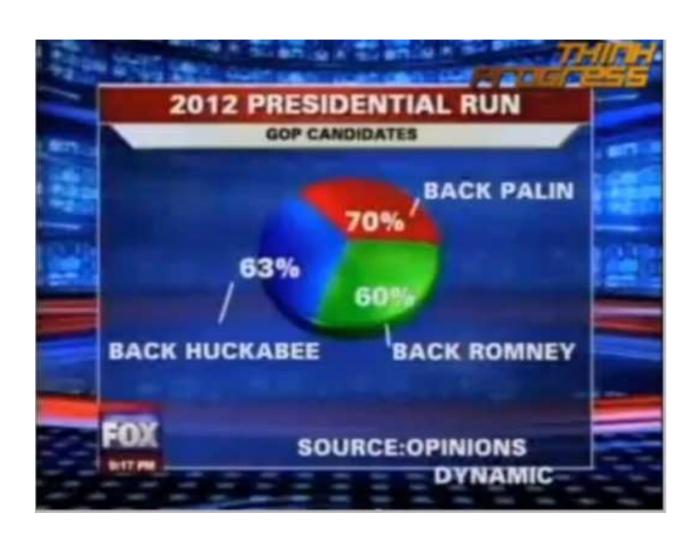
Grafici per serie storiche

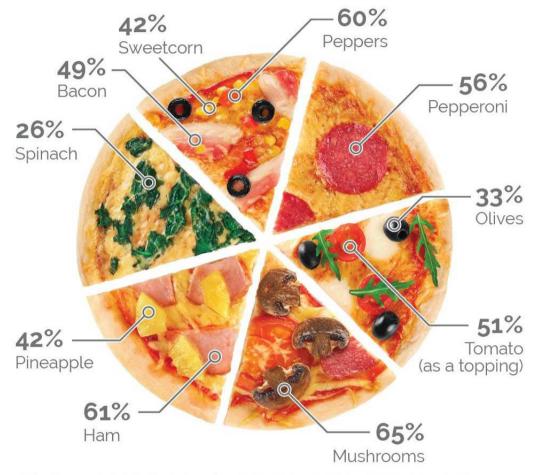

 Per la rappresentazione grafica delle serie storiche si ricorre, generalmente, ai diagrammi cartesiani. Si pongono sull'asse delle ascisse i tempi e su quello delle ordinate le intensità associate: i conseguenti punti del piano cartesiano vengono poi uniti con segmenti di retta per facilitare la percezione visiva dell'andamento del fenomeno.




Grafici per serie territoriali

- si rappresentano spesso mediante i cartogrammi: le ripartizioni territoriali sono individuate sull'appropriata cartina geografica; le intensità corrispondenti (frequenze o quantità) vengono rappresentate tramite colori o tratteggi diversi, il cui significato è specificato in apposite legende
- una variante è il cartodiagramma: a ogni ripartizione territoriale viene associato un grafico relativo a una distribuzione o ai livelli di uno o più fenomeni


cartogramma relativo alla distribuzione comunale degli alunni con cittadinanza non italiana nati in Italia –A.S. 2015/2016

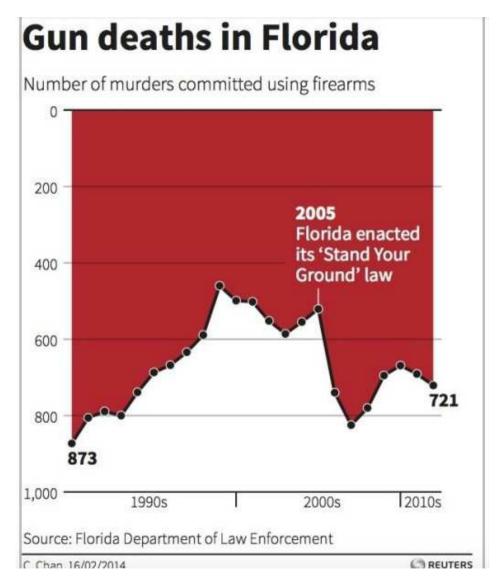

Errori nei grafici (1)

Numbers Don't Add Up

Mushroom is the UK's most liked pizza topping

Generally speaking, which of the following toppings do you like on a pizza? Select as many as you like

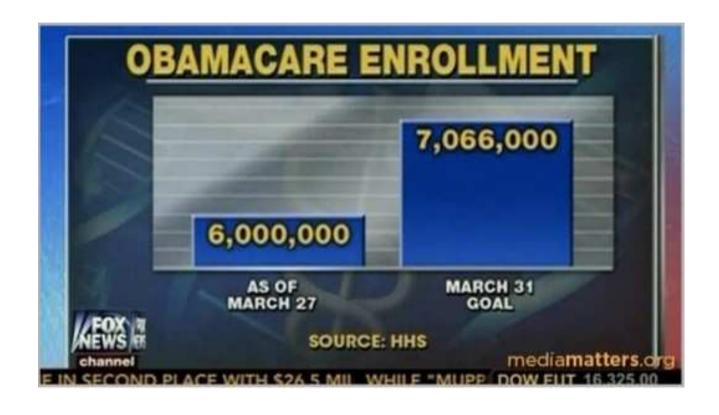
Other items not depicted include: onions (62%), chicken (56%), beef (36%), chillies (31%), jalapeños (30%), pork (25%), tuna (22%), anchovies (18%). 2% of people say they only like Margherita pizzas


YouGov yougov.com

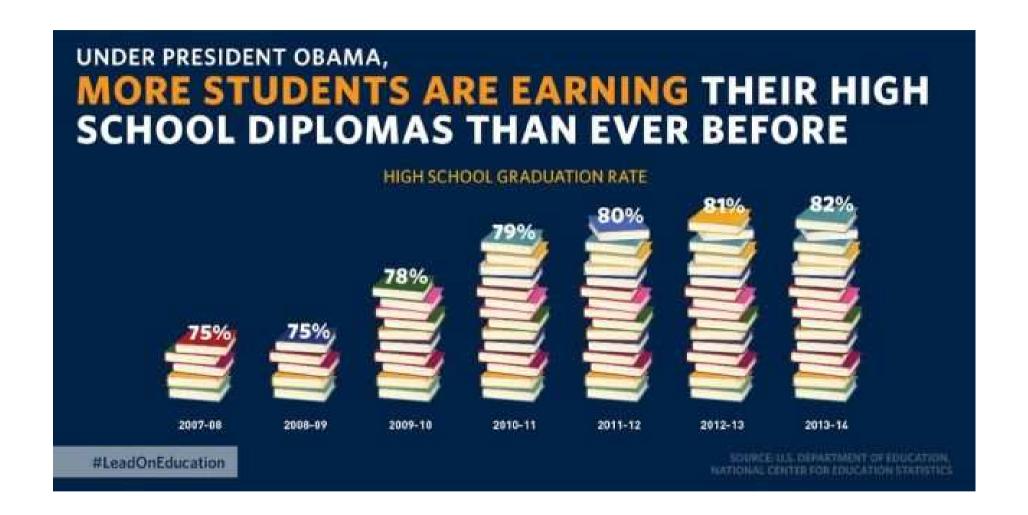
Errori nei grafici (2)

Not Following Conventions

Quando guardi questo grafico cosa pensi sia successo fra il 2005 ed il 2012?

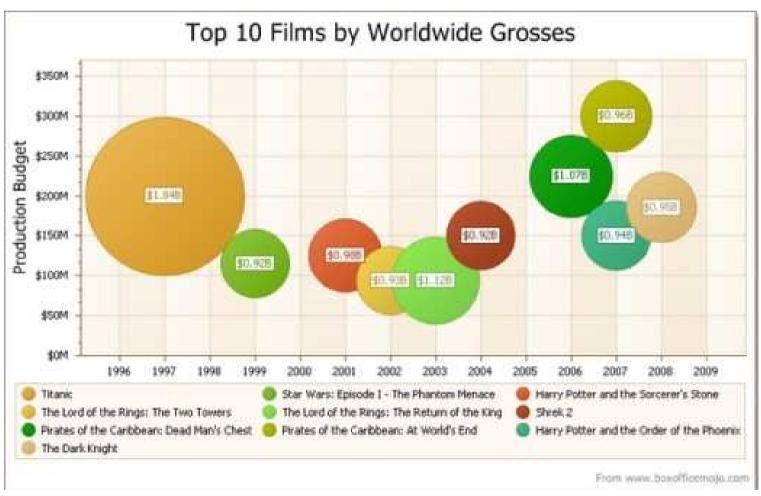


Errori nei grafici (3)


Cropped Axes

Quando guardi questo grafico pensi che l'obiettivo fissato per il 31 marzo sia facilmente raggiungibile?

E quando guardi questo grafico pensi che l'obiettivo fissato per il 31 marzo sia facilmente raggiungibile?



Errori nei grafici

(3)

Improper Bubble Sizes

