Statistica della Formazione Slides 3

A.A. 2020-2021

Docente: ANNA LINA SARRA

Modulo 1: elementi di statistica descrittiva

 Le misure di tendenza centrale "A statistician can have his head in an oven and his feet in ice, and he will say that on the average he feels fine."

Misure di tendenza centrale: Medie

- Le medie sono lo strumento con cui si sintetizzano i dati statistici.
- L'uso della media consente all'individuo di rappresentarsi mentalmente l'"ordine di grandezza" di un fenomeno, di effettuare comparazioni tra le manifestazioni di uno stesso fenomeno in tempi, luoghi o situazioni diverse, di comunicare ad altri tale informazione.

PROPRIETA' DI INTERNALITA': se a e b sono il minimo e il massimo dell'insieme dei numeri $x_1, x_2, ..., x_N$, la media è compresa tra queste due quantità: $a \le m \le b$

Medie che è possibile calcolare in relazione ai diversi tipi di carattere

		Indici di sintesi ed Operazioni				
		Moda	Statistiche d'ordine (Mediana, Quartili, Decili, Percentili, Quantili)	Medie algebriche (media aritmetica, media armonica, media geometrica, media quadratica)		
Caratteri		=, ≠	>,<	+, -, *, /		
Qualitativi	sconnessi	si	no	no		
	ordinabili	si	si	no		
Quantitativi		si	si	si		

Moda

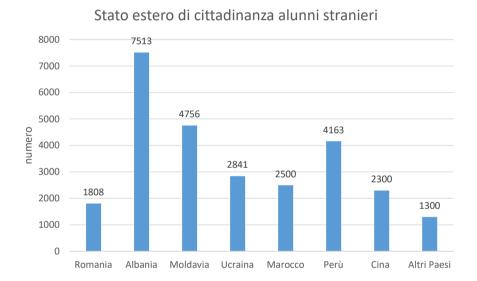
La **moda** di un collettivo, distribuito secondo un <u>carattere di qualsiasi</u> <u>natura</u>, è la modalità prevalente del carattere ossia quella **modalità a cui è associata la massima frequenza.**

Quando il carattere è quantitativo e le modalità sono raggruppate in classi, si parla di classe modale con riferimento alla classe avente la densità di frequenza più elevata.

Si possono avere distribuzioni *unimodali, bimodali, multimodali e zeromodali*

Moda esempio (1)

Carattere qualitativo sconnesso


Stato estero di cittadinanza alunni stranieri

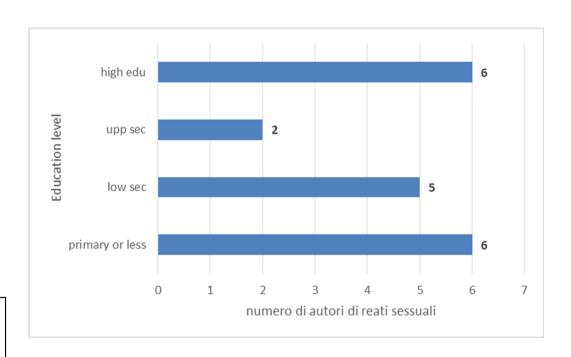
Cittadinanza	numero
Romania	1808
Albania	7513
Moldavia	4756
Ucraina	2841
Marocco	2500
Perù	4163
Cina	2300
Altri Paesi	1300
Totale	27181

Distribuzione unimodale

Moda: Albania

Frequenza massima: 7513

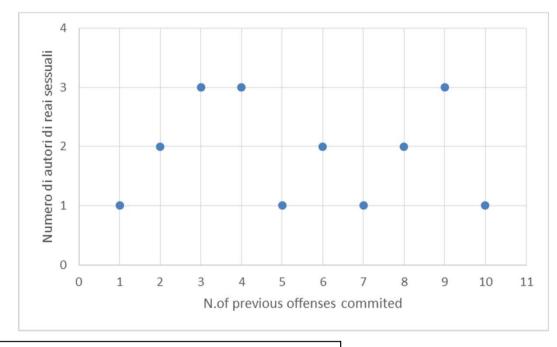
Moda esempio (2)


	frequenza
Education level	assoluta
primary or less	6
low sec	5
upp sec	2
high edu	6
totale	19

Distribuzione bimodale

Mode: primary or less; high education

Frequenza massima: 6


Carattere qualitativo ordinabile

Moda esempio (3)

Carattere quantitativo discreto

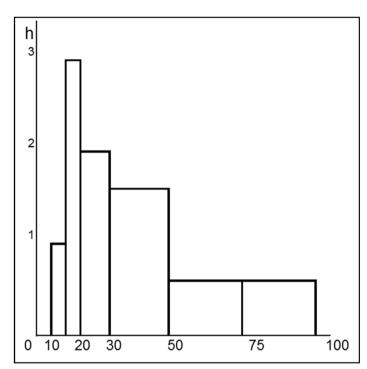
N.of	
previous	frequenza
offenses	assoluta
commited	
1	1
2	2
3	3
4	3
5	1
6	2
7	1
8	2
9	3
10	1
totale	19

Distribuzione trimodale

Moda: 3; 4; 9

Frequenza massima: 3

Carattere quantitativo continuo in classi: Classe modale


Classi di peso (in Kg)	Frequenza assoluta	Ampiezza di classe	Densità di frequenza	
c_{i-1} $-c_i$	n _i	d _i	h _i	
10 15	5	5	1	D20
15 20	15	5	3 ←	Densità Marriago
20 30	20	10	2	Massima
30 50	30	20	1,5	
50 75	15	25	0,6	
75 100	15	25	0,6	
Totale	100		-	•

$$h_i = \frac{n_i}{d_i}$$

$$d_i = c_i - c_{i-1}$$

Per determinare la moda è necessario calcolare la densità di frequenza h_i, data dal rapporto fra frequenza assoluta n_i e ampiezza di classe d_i.

La classe modale è la classe con maggiore densità di frequenza

Distribuzione unimodale

Classe modale: 15 | -- 20

Densità di frequenza massima:

3

9

Mediana

La <u>mediana</u> è quella modalità che suddivide ogni distribuzione ordinata in due distribuzioni aventi ciascuna una numerosità (o una quantità) che è il 50% della numerosità (o della quantità) della distribuzione totale.

Si può calcolare per i caratteri qualitativi ordinabili e quantitativi

Sia $x_1, x_2, ..., x_N$, una distribuzione statistica disaggregata.

Sia $y_1, y_2, ..., y_N$, con $y_1 \le y_2 \le ..., \le y_N$, la corrispondente <u>distribuzione dei termini</u> ordinati.

Mediana per N dispari

► N dispari: la mediana è la modalità che nella distribuzione ordinata occupa il

posto

$$\frac{N+1}{2}$$

Distribuzione disaggregata dell'età di 9 sex offenders

$$x_1=21$$
 $x_2=18$ $x_3=28$ $x_4=27$ $x_5=30$ $x_6=28$ $x_7=30$ $x_8=25$ $x_9=22$

Distribuzione ordinata

$$y_1=18$$
 $y_2=21$ $y_3=22$ $y_4=25$ $y_5=27$ $y_6=28$ $y_7=28$ $y_8=30$ $y_9=30$

Posizione occupata dalla mediana:

$$\frac{N+1}{2} = \frac{9+1}{2} = 5$$

Mediana:

$$\mathbf{y}_{\frac{\mathbf{N}+\mathbf{1}}{2}} = \mathbf{y}_5 = 27$$

Mediana per N pari

<u>N pari</u>: si hanno due modalità mediane che nella distribuzione ordinata occupano

rispettivamente i posti $\frac{N}{2} e^{\frac{N}{2} + \frac{1}{2}}$

Distribuzione disaggregata dell'età di 10 sex offenders

$$x_1=21$$
 $x_2=18$ $x_3=28$ $x_4=27$ $x_5=30$ $x_6=28$ $x_7=30$ $x_8=25$ $x_9=22$ $x_{10}=28$

Distribuzione ordinata

$$y_1=18$$
 $y_2=21$ $y_3=22$ $y_4=25$ $y_5=27$ $y_6=28$ $y_7=28$ $y_8=28$ $y_9=30$ $x_{10}=30$

Posizioni occupate dalle mediane

$$\frac{\mathbf{N}}{2} = \frac{10}{2} = 5; \frac{\mathbf{N}}{2} + 1 = 5 + 1 = 6$$

Mediane

$$\mathbf{y}_{\frac{N}{2}} = \mathbf{y}_5 = 27; \ \mathbf{y}_{\frac{N}{2}+1} = \mathbf{y}_6 = 28$$

Mediana

$$\frac{\mathbf{y}_{\frac{\mathbf{N}}{2}} + \mathbf{y}_{\frac{\mathbf{N}}{2}+1}}{2} = \frac{27 + 28}{2} = 27.5$$

MODULO 1. Elementi di statistica descrittiv

Se N è pari, e il carattere è quantitativo si può assumere come mediana la media aritmetica dei termini che occupano le due posizioni centrali della graduatoria dei termini ordinati, ossia le posizioni N/2 e N/2 + 1.

Esempio: Mediana per caratteri qualitativi ordinabili -N dispari

Distribuzione disaggregata:

Sufficiente, Pessimo, Insufficiente, Ottimo, Sufficiente, Insufficiente, Ottimo

Distribuzione ordinata:

Pessimo, Insufficiente, Insufficiente, Sufficiente, Sufficiente, Ottimo

Posizione occupata dalla mediana

$$\frac{N+1}{2} = \frac{7+1}{2} = 4$$

Mediana:

$$y_{\frac{N+1}{2}} = y_4 = Sufficiente$$

Esempio: Mediana per caratteri qualitativi ordinabili -N pari

Distribuzione disaggregata:

Licenza media, Diploma, Diploma, Laurea, Licenza media, Licenza elementare

Distribuzione ordinata:

Licenza elementare, Licenza media, Licenza media, Diploma, Diploma, Laurea,

Posizioni occupate dalle mediana
$$\frac{\mathbf{N}}{2} = \frac{6}{2} = 3; \frac{\mathbf{N}}{2} + 1 = \frac{6}{2} + 1 = 4;$$

Mediane

$$\mathbf{y}_{\frac{N+1}{2}} = \mathbf{y}_3 = \text{Licenza media};$$

$$\mathbf{y}_{\frac{\mathbf{N}}{2}+1} = \mathbf{y}_4 = \text{Diploma}$$

MODULO 1. Elementi di statistica descrittiva

Carattere quantitativo: La somma degli scarti in valore assoluto dei valori x_1 , x_2 , ..., x_N da una costante c è minima quando c è uguale alla mediana

1 3 5 6 11

Me=5

$$\sum_{i=1}^{5} |x_i - Me| = |1 - 5| + |3 - 5| + |5 - 5| + |6 - 5| + |11 - 5| =$$

$$= 4 + 2 + 0 + 1 + 6 = 13$$

Se al posto di 5 (che corrisponde alla mediana dei valori) metto un qualsiasi altro valore, questa somma sarà sempre >13

Quartili

Sia $x_1, x_2, ..., x_N$ una distribuzione disaggregata.

Sia $y_1, y_2, ..., y_N$ la corrispondente distribuzione di termini ordinati, con $y_1 \le y_2 \le ... \le y_N$.

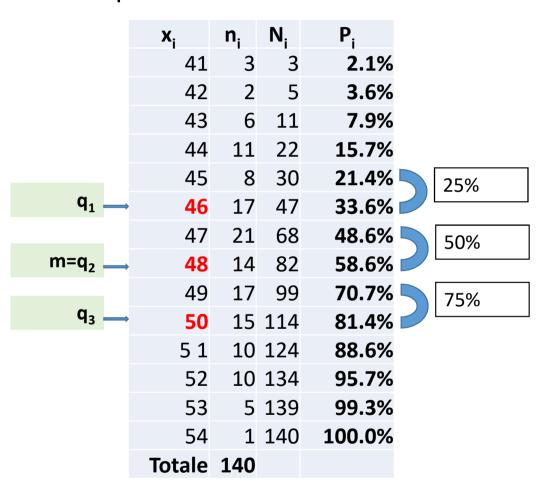
- Il **primo quartile**, q_1 , è la quantità che non è superata da un quarto (25%) dei termini ordinati della distribuzione
- Il **secondo quartile**, q_2 , è la quantità che non è superata dalla metà (50%) dei termini ordinati.
- Il **terzo quartile**, q_3 , è la quantità che non è superata dai tre quarti (75%) dei termini ordinati della distribuzione.

N.B.: Il secondo quartile coincide con la mediana

Decili

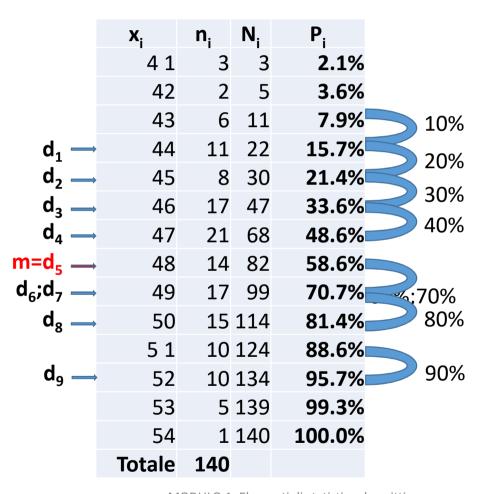
In termini discorsivi, i decili si possono definire come medie di posizione tali che:

Il primo decile: è la quantità che non è superata da un decimo (10%) dei termini ordinati


Il secondo decile: è la quantità che non è superata da due decimi (20%) dei termini ordinati

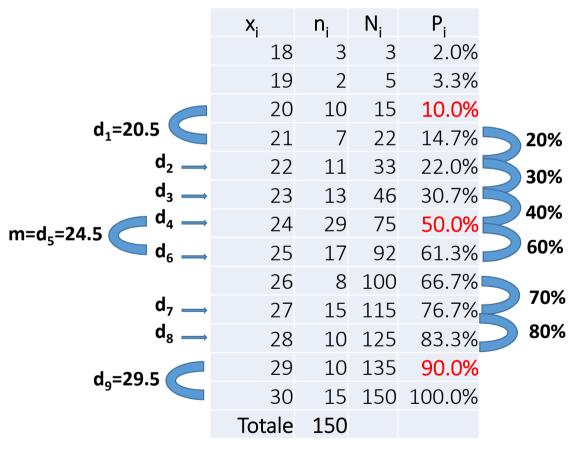
• • •

N.B.: i decili sono 9.


N.B.: Il quinto decile coincide con la mediana

Mediana e quartili: definizione operativa basata sulle frequenze percentuali cumulate

MODULO 1. Elementi di statistica descrittiva


Decili: definizione operativa basata sulle frequenze percentuali cumulate

MODULO 1. Elementi di statistica descrittiva

Esempio

Distribuzione di frequenze dei voti di 150 studenti all'esame di statistica

MODULO 1. Elementi di statistica descrittiva

Media aritmetica

La media aritmetica è quel valore di sintesi che sostituito alle modalità lascia inalterata

la loro somma

- Insieme alle percentuali e ai grafici, la media aritmetica è lo strumento statistico più largamente utilizzato
- La media aritmetica di una distribuzione statistica disaggregata si calcola come la somma dei termini $x_1, x_2, ..., x_N$ divisa per N

$$\mu = \frac{x_1 + x_2 + \cdots + x_N}{N} = \frac{1}{N} \sum_{i=1}^{N} x_i.$$

Media aritmetica per una distribuzione disaggregata: calcolo

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i.$$

Serie storica degli studenti stranieri

2009/2010	2010/2011	2011/2012	2012/2013	2013/2014	2014/2015
673800	710263	755939	786630	803053	814208

La media annua degli studenti stranieri

$$\mu = \frac{673800 + 710263 + 755939 + 786630 + 803053 + 814208}{6} \neq 739036,1$$

Media aritmetica per le distribuzioni di frequenze

Modalità singole

$$\mu = \frac{x_1 \cdot n_1 + x_2 \cdot n_2 + ... + x_k \cdot n_k}{N} = \frac{1}{N} \sum_{i=1}^k x_i \cdot n_i$$

$$= x_1 \cdot f_1 + x_2 \cdot f_2 + ... + x_k \cdot f_k = \sum_{i=1}^k x_i \cdot f_i$$

Modalità raggruppate in classi

$$\mu = \frac{\overline{x}_1 \cdot n_1 + \overline{x}_2 \cdot n_2 + \dots + \overline{x}_k \cdot n_k}{N} = \frac{1}{N} \sum_{i=1}^k \overline{x}_i \cdot n_i$$

$$\overline{x_i} = \frac{c_{i-1} + c_i}{2}$$

 $\overline{x_i} = \frac{c_{i-1} + c_i}{2}$ è il valore centrale della generica classe.

Media aritmetica per una distribuzione di frequenze a modalità singole: calcolo

$$\mu = \frac{1}{N} \sum_{i=1}^k x_i \cdot n_i$$

N.of previous offenses commited	frequenza assoluta	modalità* frequenza
X _i	n _i	x _i *n _i
1	1	1
2	2	4
3	3	9
4	3	12
5	1	5
6	2	12
7	1	7
8	2	16
9	3	27
10	1	10
totale	19	103

☐ La media aritmetica della distribuzione è data da:

$$\mu = \frac{1 \cdot 1 + 2 \cdot 2 + \dots + 10 \cdot 1}{140}$$

$$=\frac{103}{19} = 5.42$$

MODULO 1. Elementi di statistica descrittiva

Media aritmetica per una distribuzione di frequenze a modalità raggruppate in classi: calcolo

$$\mu = \frac{1}{N} \sum_{i=1}^k \overline{x}_i \! \cdot \! n_i$$

Distribuzione di frequenze

secondo l'età:

 $\overline{X_i}$

Cl	Valore			
Classe	centrale	n_{i}	$\overline{x_i} \cdot n_i$	
19-21	20.0	31	620	
21-24	22.5	45	1012.5	
24-27	25.5	5	127.5	
27-30	28.5	1	28.5	
Totale		82	1788.5	>

☐ La media aritmetica della distribuzione è data da:

$$\mu = \frac{20.0 \cdot 31 + 22.5 \cdot 45 + 25.5 \cdot 5 + 28.5 \cdot 1}{82}$$

$$= \frac{1788.5}{82} = 21.8$$

La somma algebrica degli scarti dalla media aritmetica è uguale a zero

$$\sum_{i=1}^{4} (x_i - \overline{x}) = (1-3) + (6-3) + (4-3) + (1-3) =$$

$$-2 + 3 + 1 - 2 = 0$$

Voto esame di matematica (x _i)	n _i	x _i n _i	(x _i -x)	(x _i -x)ni
18	5	90	18 - 24,76 = -6,76	-33,8
20	7	140	20 - 24,76 = -4,76	-33,32
23	8	184	23 - 24,76 = -1,76	-14,08
26	8	208	26 - 24,76 = 1,24	9,92
27	10	270	27 - <mark>24,76 = 2,24</mark>	22,4
28	7	196	28 - 24,76 = 3,24	22,68
30	5	150	30 - 24,76 = 5,24	26,2
Totale	50	1238		0

$$\sum_{i=1}^{7} (x_i - \overline{x}) n_i = 0$$

La somma degli scarti dalla media aritmetica al quadrato è un minimo

 μ =3

$$\sum_{i=1}^{4} (x_i - \mu)^2 = (1-3)^2 + (6-3)^2 + (4-3)^2 + (1-3)^2 = 4+9+1+4=18$$

Se al posto di 3, che corrisponde alla media, metto un qualsiasi altro valore, questa somma sarà sempre >18

• Proprietà di linearità : Se ogni singolo termine della distribuzione, x_i , viene sottoposto alla trasformazione

$$a + bx_i$$

con a costante qualsiasi e $b \neq 0$, la nuova media è legata a quella originaria dalla medesima trasformazione $a + b\mu$

MODULO 1. Elementi di statistica descrittiva

• **Proprietà di associatività** Se un collettivo statistico di N unità viene suddiviso in L sottoinsiemi disgiunti aventi numerosità $N^{(1)}$, $N^{(2)}$, ..., $N^{(L)}$ e medie $\mu^{(1)}$, $\mu^{(2)}$, ..., $\mu^{(L)}$, allora la media aritmetica del collettivo può essere così calcolata

$$\mu = \frac{1}{N} \big(\mu^{(1)} \cdot N^{(1)} + \mu^{(2)} \cdot N^{(2)} + \dots + \mu^{(L)} \cdot N^{(L)} \big) = \frac{1}{N} \sum_{l=1}^{N} \mu^{(l)} \cdot N^{(l)}$$

Durata media in minuti delle interrogazioni: 12.8, 13.0, 13.4, 13.4, 13.6, 13.5, 13.6, 13.7

$$\mu = \frac{12.8 + 13.0 + 13.4 + 13.4 + 13.6 + 13.5 + 13.6 + 13.7}{8} = 13.375.$$

se suddividiamo la distribuzione data nelle due seguenti:

A. 12.8, 13.0, 13.4, 13.4, 13.6
$$\mu_A$$
= 13.240 B. 13.5, 13.6, 13.7 μ_B = 13.600

la media aritmetica della distribuzione può essere ottenuta come

$$\mu = \frac{13.240 \cdot 5 + 13.600 \cdot 3}{8} = 13.375.$$

Medie aritmetica ponderata

Siano $x_1, x_2, ..., x_k$ le osservazioni e $w_1, w_2, ..., w_k$ i rispettivi pesi. Allora, la **media aritmetica ponderata** di $x_1, x_2, ..., x_k$ è data dal rapporto tra la somma delle osservazioni moltiplicate per i rispettivi pesi e la somma dei pesi

$$\mu = \frac{x_1 \cdot w_1 + x_2 \cdot w_2 + \dots + x_k \cdot w_k}{w_1 + w_2 + \dots + w_k} = \frac{\sum_{i=1}^k x_i w_i}{\sum_{i=1}^k w_i}$$

Media aritmetica ponderata: esempio

voto esame		CFU	modalità* peso
Xi		$\mathbf{W_{i}}$	x _i *w _i
	24	9	216
	26	6	156
	30	12	360
	30	6	180
	22	9	198
	18	12	216
	18	6	108
totale		60	1434

Domande (1)

- La distribuzione delle altezze degli adulti in Italia è unimodale?
- Data la distribuzione disaggregata x={21,16, 21,21,23,23,17}, calcolare
 - a. x1+x3
 - b. la media della distribuzione disaggregata
 - c. la mediana della distribuzione disaggregata
 - d. la moda della distribuzione disaggregata

Domande (2)

Tasso di abbandono alla fine del primo bienno delle scuole secondarie superiori nelle regioni italiane (anno di riferimento 2012)

Calcolare i quartili della del tasso di abbandono scolastico per il periodo 2012 e interpretare i risultati.

REGIONI	%
Piemonte	6,9
Valle d'Aosta/Vallée d'Aoste	10,8
Lombardia	6,6
Trentino-Alto Adige/Südtirol	3,2
Veneto	4,3
Friuli-Venezia Giulia	4,6
Liguria	7,5
Emilia-Romagna	6,6
Toscana	7,4
Umbria	4,7
Marche	4,8
Lazio	5,8
Abruzzo	6,1
Molise	5,7
Campania	9,3
Puglia	5,3
Basilicata	5,3
Calabria	5,3
Sicilia	9,2
Sardegna	10,4
Bolzano/Bozen	2,9
Trento	3,6

^{*} Valori %, anno di riferimento 2012

Domande (3)

Drug trafficking recorded by the police, 2006–12								
Number								
2006 2007 2008 2009 2010 2011 2012								
Germany	64,865	64,093	55,905	50,965	49,622	50,791	47,667	383,908
France	5,792	5,797	6,128	6,007	5,869	5,928	4,821	40,342
Italy	32,306	34,439	34,082	34,101	32,761	34,034	33,852	235,575
Totale	102,963	104,329	96,115	91,073	88,252	90,753	86,340	659,825

• Calcolare ed interpretare le medie aritmetiche per i tre Stati e per ogni anno.

Domande (4)

- A seguito di un controllo della guardia di finanza, sono stati rilevati casi di evasione fiscale in 10 aziende.
- Di queste, 1 azienda ha ricevuto una cartella di EQUITALIA pari a 300.000 euro e le altre 9 hanno ricevuto cartelle di 10.000 euro.
 - Qual è l'indice che consente di sintetizzare meglio l'importo delle cartelle di EQUITALIA, la media o la mediana?

Domande (5)

- I voti riportati da uno studente in 5 esami sono 18, 25, 30, 26, 27. Che voto deve prendere al prossimo esame per avere
 - una media aritmetica dei voti uguale a 26?
 - un voto mediano uguale a 26?
 - un voto modale uguale a 26?
- La media aritmetica di 5 valori è 6. La media aritmetica di 3 di questi 5 valori è 8. Qual è la media dei restanti due valori?
- La media di 121 numeri è 59. Se ogni numero è moltiplicato per 4, quale sarà la media della nuova distribuzione? E se ad ogni numero sommiamo 10?

The average human has one breast and one testicle.

— Des MacHale —

AZ QUOTES