Statistica della Formazione Slides 5

A.A. 2020-2021

Docente: ANNA LINA SARRA

Modulo 1: elementi di statistica descrittiva

 Analisi delle distribuzioni doppie: analisi della dipendenza

Tabella di contingenza

<u>Tabella di contingenza</u>: sinonimo di distribuzione doppia di frequenze, ossia di distribuzione di frequenze secondo due caratteri.

Età	Non ha terminato le superiori	Diploma di scuola superiore	Università da 1 a 3 anni	Università oltre i 4 anni	Totale	
da 25 a 34	4459	11562	10693	11071	37785	
da 35 a 54	9174	26455	22647	23160	81436	
oltre 55	14226	20060	11125	10597	56008	
Totale	27859	58077	44465	44828	175229	

Tabella di contingenza: distribuzione marginale(1)

Le frequenze che appaiono nell'ultima riga, pari ai totali di colonna, si riferiscono unicamente al carattere "Grado d'istruzione"; esse configurano, insieme alle modalità, la distribuzione marginale del carattere in questione.

		Grado d'istruzione						
Età	Non ha terminato le superiori	Diploma di scuola superiore	Università da 1 a 3 anni	Università oltre i 4 anni	Totale			
da 25 a 34	4459	11562	10693	11071	37785			
da 35 a 54	9174	26455	22647	23160	81436			
oltre 55	14226	20060	11125	10597	56008			
Totale	27859	58077	44465	44828	175229			

Tabella di contingenza: distribuzione marginale(2)

Le frequenze che appaiono nell'ultima colonna, pari ai totali di riga, si riferiscono unicamente al carattere "Età"; esse configurano, insieme alle modalità, la distribuzione marginale del carattere in questione.

		Grado d'istruzione						
Età	Non ha terminato le superiori	Diploma di scuola superiore	Università da 1 a 3 anni	Università oltre i 4 anni	Totale			
da 25 a 34	4459	11562	10693	11071	37785			
da 35 a 54	9174	26455	22647	23160	81436			
oltre 55	14226	20060	11125	10597	56008			
Totale	27859	58077	44465	44828	175229			

Tabella di contingenza in simboli

Carattere X		Carattere Y						
	y_1	<i>y</i> ₂	•••	у _ј	•••	y.	Totale	
x_1	n ₁₁	n ₁₂		n_{1j}	ŧ	n_{1t}	n ₁₀	
X_2	n ₂₁	n ₂₂	:	n_{2j}	:	n _{2t}	n ₂₀	
:	:	:	:	:	:	:	:	
X _i	n_{i1}	n _{i2}	:	n_{ii}	:	n _{it}	n_{i0}	
:	: /	÷	÷	:	:	:		
X_s	n _{s1}	n _{s2}	:	n _{sj}	:	n _{st}	n_{s0}	
Totale	n_{01}	n ₀₂	:	n_{0j}	:	n_{0t}	N	
							,	

- questi simboli indicano modalità di caratteri qualitativi, oppure valori o classi di caratteri quantitativi (s è il numero di modalità di X, t il numero di modalità di Y)
- $\square n_{ij}$ è la frequenza della coppia di modalità (x_i, y_j) -FREQUENZE CONGIUNTE
- $lacktriangleq n_{i0}$ e n_{0j} sono i totali di riga e di colonna -FREQUENZE MARGINALI

Tabella di contingenza: percentuali sul totale

Età	Non ha terminato le superiori	Diploma di scuola superiore	Università da 1 a 3 anni	Università oltre i 3 anni	Totale
da 25 a 34	2.5%	6.6%	6.1%	6.3%	21.6%
da 35 a 54	5.2%	15.1%	12.9%	13.2%	46.5%
oltre 55	8.1%	11.4%	6.3%	6.0%	32.0%
Totale	15.9%	33.1%	25.4%	25.6%	100%

La percentuale che appare in una data casella indica la frequenza percentuale delle unità del collettivo in esame che presentano le modalità che corrispondono a tale casella (in alto e nel margine sinistro).

Ad esempio <u>il 15.1% delle unità statistiche del collettivo statistico in esame hanno un'età compresa fra i 35 e 54 ed il diploma di scuola superiore</u>

Tabella di contingenza: percentuali sul totale in simboli

Carattere X		Carattere Y							
Carallerex	y_1	<i>y</i> ₂	•••	y_j	•••	y_t	Totale		
<i>X</i> ₁	p_{11}	$p_{12}^{}$:	p_{1j}	:	p_{1t}	p_{10}		
:	:	:	:	:	:	:	:		
X _i	p_{i1}	p_{i2}	:	p_{ij}	:	p_{it}	p_{i0}		
:	:	:	:	•	:	:	•		
X _s	p_{s1}	p_{s2}	:	p_{sj}	:	p_{st}	p_{s0}		
Totale	p_{01}	$p_{02}^{}$:	p_{0j}	:	p_{0t}	100		

$$\begin{aligned} p_{ij} &= \frac{n_{ij}}{N} \times 100 & \text{Frequenza percentuale congiunta} \\ p_{io} &= \frac{n_{io}}{N} \times 100 & \text{Frequenza percentuale marginale} \\ p_{io} &= \frac{n_{io}}{N} \times 100 & \text{Frequenza percentuale marginale} \\ p_{oj} &= \frac{n_{oj}}{N} \times 100 & \text{Frequenza percentuale marginale} \\ p_{oj} &= \frac{n_{oj}}{N} \times 100 & \text{Frequenza percentuale marginale} \\ della \ \text{modalità} \ y_i & \\ \end{aligned}$$

MODULO 1. Elementi di statistica descrittiva

Tabella di contingenza: distribuzioni condizionate (1)

Età	Non ha terminato le superiori	Diploma di scuola superiore	Università da 1 a 3 anni	Università oltre i 4 anni	Totale
da 25 a 34	4459	11562	10693	11071	37785
da 35 a 54	9174	26455	22647	23160	81436
oltre 55	14226	20060	11125	10597	56008
Totale	27859	58077	44465	44828	175229

Prendere una distribuzione condizionata equivale a considerare la distribuzione del carattere "Grado d'istruzione" limitatamente ai casi in cui il carattere età è compreso ad esempio nell'intervallo 35-54.

Tabella di contingenza: distribuzioni condizionate (2)

Se, invece, associamo alle modalità del carattere "Età" le frequenze di una colonna interna della tabella, otteniamo una distribuzione condizionata.

Età		Non ha terminato le superiori	Diploma di scuola superiore	Università da 1 a 3 anni	Università oltre i 4 anni	Totale
	da 25 a 34	4459	11562	10693	11071	37785
	da 35 a 54	9174	26455	22647	23160	81436
	oltre 55	14226	20060	11125	10597	56008
	Totale	27859	58077	44465	44828	175229

Prendere una distribuzione condizionata equivale a considerare la distribuzione del carattere "Età" limitatamente ai casi in cui il carattere Grado di istruzione è uguale ad esempio al diploma di scuola superiore.

Distribuzione marginale e distribuzioni condizionate di Y in simboli

Le due righe segnalate in rosso configurano la distribuzione marginale del carattere Y. Le due righe segnalate in giallo configurano la generica distribuzione condizionata di Y rispetto ad una data modalità di X.

Carattere X	V ₄	<i>y</i> ₂	•••	y _i	•••	Υ	Totale
<i>x</i> ₁	n ₁₁	√ n ₁₂	•	n_{1j}	:	n_{1t}	n ₁₀
<i>X</i> ₂	n ₂₁	n ₂₂	:	n_{2i}	:	n_{2t}	n ₂₀
:	:	:	:	:	:	:	:
X_i	n_{i1}	n _{i2}	:	n _{ii}	:	n _{it}	n_{i0}
•	:	:	i i	:	÷	:	:
$X_{\mathcal{S}}$	n_{s1}	n _{s2}	:	√n _{sj}	:	n _{st}	n_{s0}
Totale <		n_{02}	:	n_{0i}	:	n_{0t}	AP

Distribuzione marginale e distribuzioni condizionate di X in simboli

Le due righe segnalate in rosso configurano la distribuzione marginale del carattere X. Le due righe segnalate in giallo configurano la generica distribuzione condizionata di X rispetto ad una data modalità di Y.

Carattere <i>X</i>		Carattere Y						
Caratterex	y_1	<i>y</i> ₂	•••	<i>y_i</i>	•••	\boldsymbol{y}_t	Totale	
X_1	n ₁₁	n ₁₂	:	n_{1j}	:	n_{1t}	n_{10}	
X_2	n ₂₁	n ₂₂	:	n _{2j}	:	n _{2t}	n_{20}	
i i	:	:	:	:	:	:	:	
X _i	n_{i1}	n _{i2}	:	n _{ij}	:	n _{it}	n _{i0}	
1:	:	:	:	:	:	:	:	
X.	n_{s1}	n _{s2}	•	n _{sj}	:	n _{st}	n_{s}	
Totale	n ₀₁	n ₀₂	:	η_{0}	:	n_{0t}	M	

Tabella di contingenza: confronto delle distribuzioni condizionate

L'idea che sarà sviluppata è quella di confrontare le distribuzioni condizionate di un carattere rispetto alle modalità dell'altro per stabilire se i due caratteri sono legati.

Questo confronto <u>non può che essere effettuato prendendo le frequenze relative o</u> <u>percentuali di riga (o di colonna)</u> delle distribuzioni da confrontare.

Una distribuzione marginale o condizionata in cui si considerano le frequenze relative o percentuali (sul totale di riga o di colonna) verrà qualificata come **normalizzata** (ad 1 se si considerano le frequenze relative, a 100 se si considerano le frequenze percentuali).

I caratteri possono essere di natura qualsiasi.

Tabella di contingenza: confronto delle distribuzioni condizionate- esempio

Esempio: si vuole stabilire se il carattere "Grado d'istruzione" sia legato all'età; in altre parole, si vuole accertare se l'appartenenza a una data classe di età influisca, determini, in qualche misura, i livelli di istruzione degli individui di quella classe.

Non è possibile confrontare direttamente le frequenze assolute registrate da una data modalità del grado di istruzione nelle diverse classi di età perché per ogni classe di età si registra un numero diverso di unità statistiche (frequenza marginale di riga).

Per effettuare il confronto si possono calcolare le **percentuali** (o le **proporzioni**) sul totale di riga **normalizzando** in tal modo i sotto-collettivi distinti per classe di età:

si considera un sotto-collettivo di numerosità 100 (o 1) per ogni classe di età

Tabella di contingenza

Età	Non ha terminato le superiori	Diploma di scuola superiore	Università da 1 a 3 anni	Università oltre i 4 anni	Totale	
da 25 a 34	4459	11562	10693	11071	37785	
da 35 a 54	9174	26455	22647	23160	81436	
oltre 55	14226	20060	11125	10597	56008	
Totale	27859	58077	44465	44828	175229	

Tabella di contingenza: percentuali sul totale di riga (distribuzione percentuale di Y condizionata ad X)

	Rio					
Età		Non ha terminato le superiori	Diploma di scuola superiore	Università da 1 a 3 anni	Università oltre i 3 anni	Totale
	da 25 a 34	11.8%	30.6%	28.3%	29.3%	100%
	da 35 a 54	11.3%	32.5%	27.8%	28.4%	100%
	oltre 55	25.4%	35.8%	19.9%	18.9%	100%
	Distribuzione marginale % del grado di istruzione	15.9%	33.1%	25.4%	25.6%	100%

La percentuale che appare in una data casella indica la percentuale delle unità del sottocollettivo di età compresa nella classe indicata in riga che presentano il grado di istruzione indicato in colonna.

Ad esempio il 32.5% delle unità statistiche che hanno un'età compresa fra i 35 e 54 ha il diploma di scuola superiore.

Distribuzione percentuale di Y condizionata ad X in simboli

Carattere <i>X</i>			Totale				
Carallerex	y_1	<i>y</i> ₂	•••	у _ј	•••	y_t	iotale
<i>x</i> ₁	$p_{_{1/x1}}$	$p_{2/x1}$:	$p_{j/x1}$:	$p_{t/x1}$	100
<i>x</i> ₂	p _{1/x2}	$p_{2/x2}$:	$p_{i/x2}$:	$p_{t/x2}$	100
:	:	:	:	•	:	:	•
X_i	$p_{_{1/\! ext{xi}}}$	$p_{2/xi}$:	$p_{j/xi}$:	$p_{t/xi}$	100
:		•	:	•	:	•	:
X _s	$p_{_{1/\! ext{xs}}}$	$p_{2/xs}$:	$p_{j/xs}$:	$p_{t/xs}$	100
Distribuzione % marginale di y	$p_{01}^{}$	$p_{02}^{}$:	p_{0j}	:	P_{0t}	100

$$\begin{aligned} p_{j/x_i} &= \frac{\textbf{n}_{ij}}{\textbf{n}_{i0}} \times 100 & \text{Frequenza percentuale della } \\ & \text{modalità } \textbf{y}_j \text{ condizionata alla } \\ & \text{modalità } \textbf{x}_i \end{aligned} \\ p_{0j} &= \frac{\textbf{n}_{0j}}{\textbf{N}} \times 100 & \text{Frequenza percentuale } \\ & \text{marginale della modalità } \textbf{y}_j \end{aligned}$$

$$p_{0j} = \frac{n_{0j}}{N} \times 100$$
 Frequenza percentuale marginale della modalità y

$$\sum_{j=1}^{t} p_{j/xi} = 100, i = 1,2,...,s$$

Tabella di contingenza: confronto delle distribuzioni condizionate- esempio (2)

Esempio:

se si volesse confrontare la composizione in termini di età di ogni sotto-collettivo omogeneo rispetto al titolo di studio, si dovrebbero calcolare le **percentuali** (o le **proporzioni**) sul totale di colonna **normalizzando** in tal modo i sotto-collettivi distinti per grado di istruzione: **si considera un sotto-collettivo di numerosità 100 (o 1) per ogni livello di istruzione**

Tabella di contingenza

		Grado d'is	struzione		
Età	Non ha terminato le superiori	Diploma di scuola superiore	Università da 1 a 3 anni	Università oltre i 4 anni	Totale
da 25 a 34	4459	11562	10693	11071	37785
da 35 a 54	9174	26455	22647	23160	81436
oltre 55	14226	20060	11125	10597	56008
Totale	27859	58077	44465	44828	175229

Tabella di contingenza: percentuali sul totale di colonna (distribuzione percentuale di X condizionata ad Y)

1			Grado d'istruzione						
	Età	Non ha terminato le superiori	Diploma di scuola superiore	Università da 1 a 3 anni	Università oltre i 3 anni	Distribuzione % marginale dell'età			
	da 25 a 34	16.0%	19.9%	24.0%	24.7%	21.6%			
	da 35 a 54	32.9%	45.6%	50.9%	51.7%	46.5%			
	oltre 55	51.1%	34.5%	25.0%	23.6%	32.0%			
	Totale	100%	100%	100%	100%	100%			

La percentuale che appare in una data casella indica la percentuale delle unità del sotto-collettivo omogeneo rispetto al grado di istruzione indicato in colonna che hanno età nella classe indicata in riga.

Ad esempio il 45.6% delle unità statistiche aventi il diploma di scuola superiore ha un'età compresa fra 35 e 54 anni.

Distribuzione percentuale di X condizionata ad Y in simboli

Carattere X		Carattere Y					
Caratterex	<i>y</i> ₁	<i>y</i> ₂	•••	y_j	•••	y_t	% marginale di X
<i>X</i> ₁	$p_{_{1/y1}}$	$p_{1/y2}$:	$p_{_{1/\! ext{yj}}}$:	$p_{_{1/\mathrm{yt}}}$	$oldsymbol{ ho}_{ exttt{10}}$
<i>X</i> ₂	$p_{2/y1}$	p _{2/y2}	:	$p_{2/yj}$:	$p_{2/yt}$	p_{20}
:	•	•	:	:	:	:	:
X_i	$p_{i/y1}$	$p_{i/y2}$:	$p_{i/yj}$:	$p_{i/yt}$	$oldsymbol{p}_{i0}$
:	•	•	:	•	:	•	:
X_{s}	$p_{\mathrm{s/y1}}$	$p_{\rm s/y2}$:	$p_{s/yj}$:	$p_{s/yt}$	$oldsymbol{ ho}_{s0}$
Totale	100	100	:	100	:	100	100

$$p_{i/y_j} = \frac{n_{ij}}{n_{0j}} \times 100 \quad \begin{array}{l} \text{Frequenza percentuale della} \\ \text{modalità } x_i \text{ condizionata alla} \\ \text{modalità } y_j \end{array}$$

$$p_{i0} = \frac{n_{i0}}{N} \times 100$$

 $p_{i0} = \frac{n_{i0}}{N} \times 100$ Frequenza percentuale marginale della modalità y_i

$$\sum_{i=1}^{s} p_{i/yj} = 100, j = 1,2,...,t$$

Confronto delle distribuzioni condizionate- esempio

	Numero di Laureati		Percentuali riga			Percentuali colonna			
Gruppo di lauree	Uomini	Donne	Totale	Uomini	Donne	Totale	Uomini	Donne	Totale
agrario	2002	1664	3666	54.6%	45.4%	100%	2.7%	1.5%	2.0%
architettura	4544	5022	9566	47.5%	52.5%	100%	6.2%	4.5%	5.2%
chimico-farmaceutico	1954	3299	5253	37.2%	62.8%	100%	2.7%	3.0%	2.8%
economico-statistico	12286	13417	25703	47.8%	52.2%	100%	16.7%	12.1%	13.9%
educazione fisica	2002	1341	3343	59.9%	40.1%	100%	2.7%	1.2%	1.8%
geo-biologico	3264	6627	9891	33.0%	67.0%	100%	4.4%	6.0%	5.4%
giuridico	3948	6413	10361	38.1%	61.9%	100%	5.4%	5.8%	5.6%
ingegneria	16832	5315	22147	76.0%	24.0%	100%	22.9%	4.8%	12.0%
insegnamento	672	8789	9461	7.1%	92.9%	100%	0.9%	7.9%	5.1%
letterario	4757	11702	16459	28.9%	71.1%	100%	6.5%	10.5%	8.9%
linguistico	1570	9335	10905	14.4%	85.6%	100%	2.1%	8.4%	5.9%
medico	6802	13503	20305	33.5%	66.5%	100%	9.3%	12.2%	11.0%
politico-sociale	7500	13990	21490	34.9%	65.1%	100%	10.2%	12.6%	11.6%
psicologico	1677	8677	10354	16.2%	83.8%	100%	2.3%	7.8%	5.6%
scientifico	3680	1896	5576	66.0%	34.0%	100%	5.0%	1.7%	3.0%
Totale	73490	110990	184480	39.8%	60.2%	100%	100%	100%	100%

Elaborazione su dati Almalaurea -XV Indagine (2013) - Condizione occupazionale dei laureati

Analisi delle relazioni di una distribuzione doppia con caratteri di natura qualsiasi

Data la distribuzione congiunta di due caratteri di natura qualsiasi, i quesiti a cui la statistica deve rispondere sono

- ✓ esiste dipendenza o indipendenza fra i due caratteri?
- ✓ se esiste dipendenza, come sono associate le modalità dei due caratteri?

Analisi delle relazioni di una distribuzione doppia con caratteri di natura qualsiasi: <u>indipendenza</u>

Su un collettivo di 180 studenti della d'Annunzio, distinti per sesso, è stata rilevata la frequenza con cui accedono al servizio mensa

Indipendenza

	Frequer							
Sesso	sso Raramente A volte Spesso							
Maschio	10	20	30	60				
Femmina	20	40	60	120				
Totale	30	60	90	180				

	Freque							
Sesso	Raramente	Raramente A volte Spesso						
Maschio	16.7%	33.3%	50.0%	100%				
Femmina	16.7%	33.3%	50.0%	100%				
Totale	16.7%	33.3%	50.0%	100%				

La frequenza con cui accede al servizio mensa dipende dal sesso dello studente?

Dalla tabella delle **percentuali sul totale di riga** si vede come per ogni modalità di frequenza del servizio mensa le percentuali di maschi e di femmine sono uguali:

la frequenza <u>non dipende</u> dal sesso dello studente

Analisi delle relazioni di una distribuzione doppia con caratteri di natura qualsiasi: dipendenza perfetta

Su un collettivo di 150 lavoratori viene registrato il titolo di studio e la qualifica professionale all'interno dell'azienda

Dipenden					
	Q	ualifica profes	ssionale		
Titolo di studio	Bassa	Media	Alta		Totale
Licenza elementare	10	0		0	10
Licenza media	20	0		0	20
Diploma	0	70		0	70
Laurea	0	0		50	50
Totale	30	70		50	150

La qualifica professionale dipende dal titolo di studio?

Si registra una <u>dipendenza perfetta</u> della qualifica professionale dal titolo di studio

Un carattere Y dipende perfettamente da X quando ad ogni modalità di X è associata una sola modalità di Y. Non è un relazione bidirezionale.

Analisi delle relazioni di una distribuzione doppia con caratteri di natura qualsiasi: <u>interdipendenza perfetta</u>

Su un collettivo di 45 dipendenti di un'azienda si rileva la categoria professionale e la classe retributiva

Interdipendenza perfetta

	Cla	Classe retributiva					
	25000-	28000-	33500-				
Categoria	28000	33500	45000	Totale			
Operatore	25	0	0	25			
Collaboratore	0	15	0	15			
Funzionario	0	0	5	5			
Totale	25	15	5	45			

Il livello retributivo dipende dalla categoria professionale?

Si registra una interdipendenza perfetta

Tra due caratteri sussiste interdipendenza perfetta se ad ogni modalità di uno dei due caratteri corrisponde una e una sola modalità dell'altro carattere e viceversa

È una relazione bidirezionale.

Analisi delle relazioni di una distribuzione doppia con caratteri di natura qualsiasi: <u>dipendenza</u>

valori assoluti

Gruppo di lauree	Lavora	Non lavora ma cerca	Impegnato in corso universitario/ praticantato	Non lavora e non cerca e non è impegnato	Totale
agrario	1767	1111	645	143	3666
architettura	4496	2650	2085	335	9566
chimico-farmaceutico	2626	1361	1045	221	5253
economico-statistico	11412	7351	6272	668	25703
educazione fisica	2237	692	324	90	3343
geo-biologico	3037	2898	3620	336	9891
giuridico	2818	3647	3699	197	10361
ingegneria	10187	3699	7774	487	22147
insegnamento	6784	1996	407	274	9461
letterario	7160	5020	3588	691	16459
linguistico	5201	3359	1952	393	10905
medico	12467	4954	1970	914	20305
politico-sociale	11068	6855	2772	795	21490
psicologico	4255	2972	2775	352	10354
scientifico	2549	836	2007	184	5576
Totale	88064	49401	40935	6080	184480

Analisi delle relazioni di una distribuzione doppia con caratteri di natura qualsiasi: dipendenza

% riga

Gruppo di lauree	Lavora	Non lavora ma cerca	Impegnato in corso universitario/ praticantato	Non lavora e non cerca e non è impegnato	Totale
agrario	48.2%	30.3%	17.6%	3.9%	100%
architettura	47.0%	27.7%	21.8%	3.5%	100%
chimico-farmaceutico	50.0%	25.9%	19.9%	4.2%	100%
economico-statistico	44.4%	28.6%	24.4%	2.6%	100%
educazione fisica	66.9%	20.7%	9.7%	2.7%	100%
geo-biologico	30.7%	29.3%	36.6%	3.4%	100%
giuridico	27.2%	35.2%	35.7%	1.9%	100%
ingegneria	46.0%	16.7%	35.1%	2.2%	100%
insegnamento	71.7%	21.1%	4.3%	2.9%	100%
letterario	43.5%	30.5%	21.8%	4.2%	100%
linguistico	47.7%	30.8%	17.9%	3.6%	100%
medico	61.4%	24.4%	9.7%	4.5%	100%
politico-sociale	51.5%	31.9%	12.9%	3.7%	100%
psicologico	41.1%	28.7%	26.8%	3.4%	100%
scientifico	45.7%	15.0%	36.0%	3.3%	100%
% condizione occupazionale	47.7%	26.8%	22.2%	3.3%	100%

Dipendenza statistica: connessione

Alla luce delle considerazioni precedenti, possiamo dare una definizione del concetto di dipendenza statistica con riferimento a una tabella di contingenza.

Il carattere *Y (X)* <u>dipende</u> dal carattere *X (Y)* se <u>le</u> <u>distribuzioni condizionate normalizzate sono diverse</u> tra loro.

All'opposto:

Si dice che il carattere Y (X) <u>non dipende dal carattere X (Y)</u> <u>quando le distribuzioni condizionate normalizzate sono</u> <u>uguali tra loro.</u>

Frequenze congiunte in caso di indipendenza

Situazione di indipendenza

	Frequenza della mensa								
	Raramente	Raramente A volte Spesso							
M	10	20	30	60					
F	20	40	60	120					
Tot	30	60	90	180					

	Frequ			
	Raramente	A volte	Spesso	Totale
M	16.7%	33.3%	50.0%	100%
F	16.7%	33.3%	50.0%	100%
Tot	16.7%	33.3%	50.0%	100%

X e Y sono indipendenti se le distribuzioni delle frequenze percentuali condizionate di Y rispetto ad X sono uguali alla distribuzione percentuale marginale di Y (oppure se le distribuzioni delle frequenze percentuali condizionate di X rispetto ad Y sono uguali alla marginale di X).

Quindi nel caso di indipendenza esiste **proporzionalità** fra le frequenze assolute delle righe (o delle colonne).

Da tale relazione si vede come nel caso di indipendenza le frequenze congiunte possono essere espresse come

$$\mathbf{p}_{\mathbf{j}/\mathbf{x}_{\mathbf{i}}} = \mathbf{p}_{\mathbf{0}\mathbf{j}}$$

$$\frac{n_{ij}}{n_{i0}}100 = \frac{n_{0j}}{N}100 \qquad \forall i, j$$

$$n_{ij}: n_{i0} = n_{0j}: N \quad \forall i, j$$

$$n_{ij} = \frac{n_{i0} \cdot n_{0j}}{N} \qquad \forall i, j$$

Misura della dipendenza

L'intensità della dipendenza viene misurata come allontanamento dalla condizione di indipendenza.

Per far questo si costruisce la tabella teorica di indipendenza che presenta in ogni casella la frequenza teorica di indipendenza.

$$\hat{n}_{ij} = \frac{n_{i0} \cdot n_{0j}}{N} \qquad \forall i, j$$

Per misurare la dipendenza si mette a confronto la tabella effettiva con quella teorica di indipendenza tramite le differenze

frequenza effettiva - frequenza teorica = $n_{ij} - \hat{n}_{ij}$

Costruzione della tabella teorica di indipendenza

Calcolo delle frequenze teoriche.

Per calcolare le frequenze teoriche si riscrive la tabella riportando solo i marginali di riga e di colonna ed il totale e poi per ogni casella si effettua il prodotto tra il totale di riga e il totale di colonna diviso per il totale generale.

Costruzione della tabella teorica di indipendenza

Nella tabella che segue sono indicate in rosso le frequenze che si

avrebbero se	vi fosse indin	endenza.		
	Triosse marp	ciideiiza.		81436.58077
		Grado d'is	struzione	175229
	Non ho	Dinlama di		

		Grado d'istruzione			
Età	Non ha terminato le superiori	Diploma di scuola superiore	Università da 1 a 3 anni	Università oltre i 4 anni	Totale
da 25 a 34	6007.3 4459	12523.3 11562	9588.1 10693	9666.4 11071	37785
da 35 a 54	12947.2 9174	26990.7 264 55	20664.7 22647	20833.4 23160	81436
oltre 55	8904.5 14226	18563.0 20060	14212.2 11125	14328.3 10597	56008
Totale	27859	58077	44465	44828	175229

Le frequenze teoriche sono state ottenute nel modo seguente: in ogni casella si è posto il numero risultante dal prodotto tra il totale di riga e il totale di colonna diviso per il totale generale.

Indice di associazione chi-quadrato di Pearson

$$\chi^{2} = \sum_{i=1}^{s} \sum_{j=1}^{t} \frac{(n_{ij} - n_{i0} n_{0j} / N)^{2}}{n_{i0} n_{0j} / N} =$$

$$= \sum_{i=1}^{s} \sum_{j=1}^{t} \frac{(n_{ij} - \hat{n}_{ij})^{2}}{\hat{n}_{ij}}$$

L'indice χ^2

- è sempre non negativo
- > assume valore 0 nel caso di associazione nulla
- aumenta all'aumentare della dipendenza (o associazione dei due caratteri)
- ➤ a parità di associazione l'indice aumenta al crescere di N (quindi dipende da N)

Misura della dipendenza: calcolo dell'indice

$$\chi^2$$

$$\chi^2 = \sum_{i=1}^{s} \sum_{j=1}^{t} \frac{(\eta_{ij} - \hat{\eta}_{ij})^2}{\hat{\eta}_{ij}}$$

Età	Non ha terminato le superiori	Diploma di scuola superiore	Università da 1 a 3 anni	Università oltre i 4 anni	Totale
da 25 a 34	6007.3 4459	12523.3 11562	9588.1 10693	9666.4 11071	37785
da 35 a 54	12947.2 9174	26990.7 26455	20664.7 22647	20833.4 23160	81436
oltre 55	8904.5 14226	18563.0 20060	14212.2 11125	14328.3 10597	56008
Total e	27859	58077	44465	44828	175229

$\chi^2 = \frac{(4459 - 6007.3)^2}{6007.3}$	F
$+\frac{(11562-12523.3)^2}{12523.3}+\cdots+$ $+\frac{(10597-14328.3)^2}{14328.3}=$ $=7307.8$	-

(n _{ij}	$-\hat{\mathbf{n}}_{ij})^2$
	$\hat{\mathbf{n}}_{ij}$

	Grado d'istruzione					
Età	Non ha terminato le superiori	Diploma di scuola superiore	Università da 1 a 3 anni	Università oltre i 4 anni		
da 25 a 34	399.1	73.8	127.3	204.1		
da 35 a 54	1099.6	10.6	190.2	259.8		
oltre 55	3180.2	120.7	670.6	971.7		

Totale=7307.8

Indice di associazione quadratica media

Siccome l'indice χ^2 dipende da N, per eliminare l'influenza della numerosità delle osservazioni si può calcolare <u>l'indice di associazione quadratica media</u>

$$\psi = \sqrt{\frac{1}{N}\sum_{i=1}^s \sum_{j=1}^t \frac{\left(n_{ij} - \hat{n_{ij}}\right)^2}{\hat{n_{ij}}}} = \sqrt{\frac{\chi^2}{N}}$$

Nell'esempio precedente si ha

$$\Psi = \sqrt{\frac{\chi^2}{N}} = \sqrt{\frac{7307.8}{175229}} = 0.2$$

Indici di associazione relativi

L'indice ψ , e l'indice χ^2 , vanno rapportati al massimo che possono assumere per poter esprimere un giudizio sul grado di dipendenza. Si può dimostrare che il massimo di ψ è pari a

$$\max(\psi) = \sqrt{\min(s-1, t-1)}$$

Il massimo di χ^2 è

$$\max(\chi^2) = N \cdot \min(s-1, t-1)$$

Nella tabella di interdipendenza perfetta (dove si deve avere s=t) si ottiene il valore massimo

Interdipendenza perfetta: un esempio

Χ	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	Tot
	45	0	0	0	45
<i>X</i> ₁	10.4	4.6	8.6	21.3	
.,	0	20	0	0	20
<i>X</i> ₂	4.6	2.1	3.8	9.5	
.,	0	0	0	92	92
<i>X</i> ₃	21.3	9.5	17.5	43.6	
v	0	0	37	0	37
<i>X</i> ₄	8.6	3.8	7.1	17.5	
Tot	45	20	37	92	194

<u>(n</u>	$rac{1}{\hat{m{n}}_{ij}}-\hat{m{n}}_{ij}$) ²			$\chi^2 = \sum_{i=1}^{s} \sum_{j=1}^{t} \frac{(n_{ij} - \hat{n}_{ij})}{\hat{n}_{ij}}$
	Ĭ	Υ			$\chi - \sum_{i=1}^{n} \sum_{j=1}^{n} \hat{\mathbf{n}}_{ij}$
Χ	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	= 582
κ 1	10.4	4.7	8.6	21.3	→ CC_
2	4.7	156.1	3.8	9.5	7 500
3	21.3	9.5	17.5	53.6	$\psi = \sqrt{\frac{\chi^2}{2}} = \sqrt{\frac{582}{582}} = \sqrt{\frac{582}{1000}}$
ر ₄	8.6	3.8	127.1	17.5	$\psi = \sqrt{\frac{\chi^2}{N}} = \sqrt{\frac{582}{194}} =$
	Tota	ale=58	32) =	\leq	VIN VIDT

$$\max(\chi^2) = N \min(s-1, t-1) = 194 \cdot \min(4-1, 4-1) = 194 \cdot 3 = 582$$

$$\max(\psi) = \sqrt{\min(s-1, t-1)} = \sqrt{\min(4-1, 4-1)3} = \sqrt{3}$$

 $\max(\chi^2) = N \cdot \min(s-1, t-1)$

 $\max(\psi) = \sqrt{\min(s-1, t-1)}$

Indice simmetrico di connessione

Un indice normalizzato di connessione è l'indice di Cramér

$$C = \frac{\psi}{\sqrt{\min[(s-1),(t-1)]}}$$

dove min[(s-1), (t-1)] indica il minimo tra le due quantità tra parentesi quadra.

L'indice C

• è sempre compreso tra 0 e 1

vale 0 nel caso di indipendenza
vale 1 se
 i due caratteri sono perfettamente associati
 e s=t
 X dipende perfettamente da Y e s<t
 Y dipende perfettamente da X e s>t

Misura normalizzata di dipendenza unilaterale

Se si considera la variabile Y come logicamente dipendente si può considerare una dipendenza unilaterale e rapportare l'indice y al suo massimo, ottenendo l'indice normalizzato di dipendenza di Y da X

$$\boldsymbol{\mathcal{C}_{\text{y}}} = \frac{\boldsymbol{\psi}}{\sqrt{t-1}}$$

Analogamente, se si considera la variabile X come logicamente dipendente si può considerare una dipendenza unilaterale e rapportare l'indice y al suo massimo, ottenendo l'indice normalizzato di dipendenza di X da Y

$$C_{x} = \frac{\Psi}{\sqrt{s-1}}$$

Misura normalizzata di dipendenza: esempio

Calcolo dell'indice C_y per la tabella di contingenza

		Grado d'i	struzione		
	Non ha terminato le superiori	Diploma di scuola superiore	Università da 1 a 3 anni	Università oltre i 4 anni	Totale
da 25 a 34	4459	11562	10693	11071	37785
da 35 a 54	9174	26455	22647	23160	81436
oltre 55	14226	20060	11125	10597	56008
Totale	27859	58077	44465	44828	175229

$$\psi = 0.20$$

$$\psi = 0.20$$

$$\max(\psi) = \sqrt{t - 1} = \sqrt{3}$$

$$C_Y = \frac{0.20}{\sqrt{3}} = 0.12$$

Non si ha una forte dipendenza di Y da X

Interpretazione dell'associazione

Se non c'è indipendenza, per veder come si associano le modalità dei due caratteri si possono confrontare le frequenze osservate con le frequenze teoriche.

	Grado d'istruzione								
Età	Non ha terminato le superiori		Diploma di scuola superiore		Università da 1 a 3 anni		Università oltre i 4 anni		
da 25 a 34	Neg.	6007.3 4459	Neg.	12523.3 11562	Pos.	9588.1 10693	Pos.	9666.4 11071	
da 35 a 54	Neg.	12947.2 9174	Neg.	26990.7 26455	Pos.	20664.7 22647	Pos.	20833.4 23160	
oltre 55	Pos.	8904.5 14226	Pos.	18563.0 20060	Neg.	14212.2 11125	Neg.	14328.3 10597	

 $\mathbf{n}_{ij} > \hat{\mathbf{n}}_{ij}$ Associazione positiva fra le modalità xi e yj

 $\mathbf{n}_{ij} < \hat{\mathbf{n}}_{ij}$ Associazione negativa fra le modalità xi e yj

Interpretazione dell'associazione: esempio

		Livello di accordo con l'affermazione: È molto importante per me essere Italiano							
Inclinazione	per n	ulla	росс)	abbastanza		molt	molto	
politica	d'acco	rdo	d'acco	rdo	d'accor	do	d'acco	rdo	Totale
cipietra	Pos.	59	Pos.	110	Pos.	51		14	234
sinistra		37.5		84.5		64.6		47.4	254
contro		22		77		84	Pos	63	246
centro		39.4		88.8		68.0		49.8	240
destra		6		9		15	Pos	33	<i>63</i>
uestra		10.1		22.7		17.4		12.8	03
Totale		87		196		150		110	543

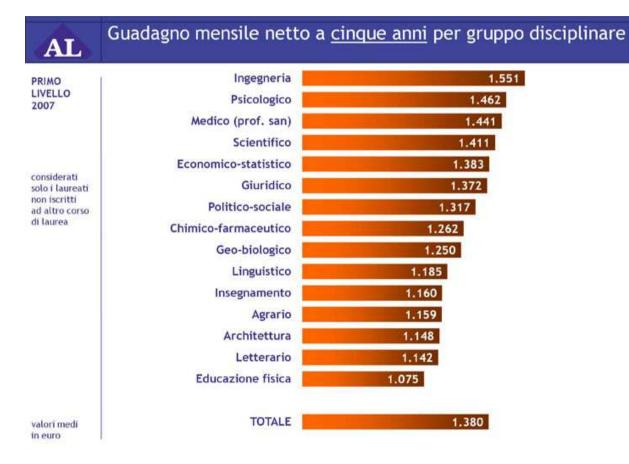
Interpretazione dell'associazione: esempio

	<u>Livello di accordo con l'affermazione</u> : È molto importante per me essere Italiano								
Inclinazione politica	per nulla d'accordo	poco d'accordo	abbastanza d'accordo	molto d'accordo	Totale				
sinistra	25.2%	47.0%	21.8%	6.0%	100%				
centro	8.9%	31.3%	34.1%	25.6%	100%				
destra	9.5%	14.3%	23.8%	52.4%	100%				
Distribuzione % del livello di accordo	16.0%	36.1%	27.6%	20.3%	100%				

Dipendenza in media

Supponendo che il **carattere** Y sia **quantitativo**, vogliamo studiare l'influenza che le modalità del carattere X esercitano sulle medie delle distribuzioni condizionate.

Si dice che <u>il carattere Y dipende in media da X se le</u> medie aritmetiche delle distribuzioni condizionate di Y sono diverse tra loro.

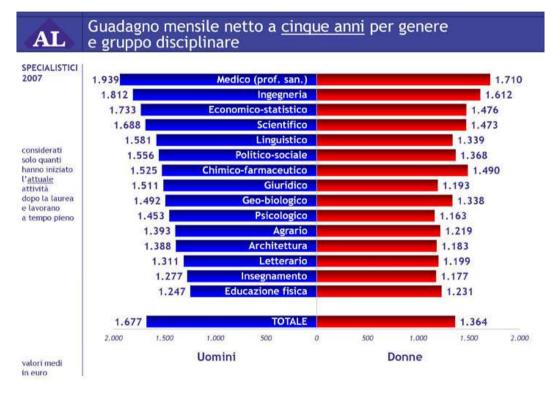

Viceversa, se le medie aritmetiche sono uguali tra di loro si dice che Y è indipendente in media da X.

Esempio di dipendenza in media (1):

Guadagno mensile netto dei laureati di primo livello a

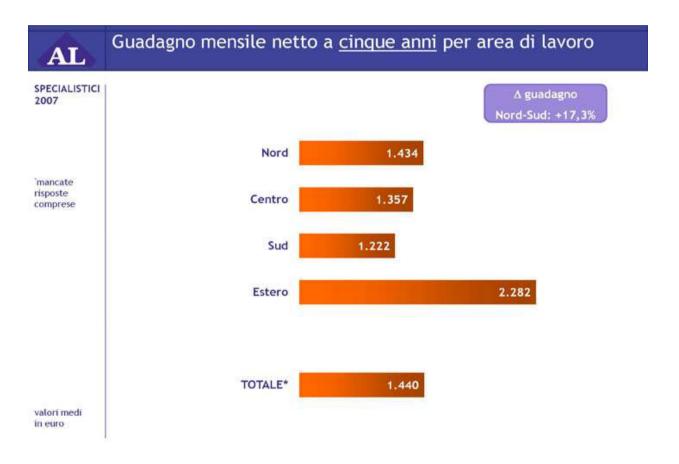
5 anni dalla laurea

Almalaurea - Rapporto 2013 "Condizione occupazionale dei Laureati. XV Indagine 2012"



Esempio di dipendenza in media (2):

Guadagno mensile netto dei laureati specialistici a 5 anni


dalla laurea distinti per genere

Almalaurea - Rapporto 2013 "Condizione occupazionale dei Laureati. XV Indagine 2012"

Esempio di dipendenza in media (3):

Guadagno mensile netto dei laureati specialistici a 5 anni dalla laurea specialistica distinti per area di lavoro

Dipendenza in media: esempio

Valori centrali

MEDIE DELLE CONDIZIONATE

DISTRIBUZIONI

$\mu_Y(x_1) = \frac{1}{15} (58.0 + 73.0 +$	_
+88.2+108.13) = 105.33	

$$\mu_{Y}(x_{2}) = \frac{1}{17}(58 \cdot 0 + 73 \cdot 5 + 88 \cdot 7 + 108 \cdot 5) = 89.47$$

$$\mu_{Y}(x_3) = \frac{1}{14} (58 \cdot 2 + 73 \cdot 8 +$$

$$+88 \cdot 4 + 108 \cdot 0) = 75.14$$

Età (<i>X</i>)	51-65 58	66-80 73	8 1-95	96-120 108	Totale
41-50	0	0	2	13	15
51-60	0	5	7	5	17
61-70	2	8	4	0	14
71-80	6	6	2	0	14
Totale	8	19	15	18	60

$$\mu_{y}(x_{i}) = \frac{1}{n_{i0}} \sum_{j=1}^{t} y_{j} n_{ij}, i = 1,...,s$$

$$\mu_Y(x_4) = \frac{1}{14} (58.6 + 73.6 + 88.2 + 108.0) = 68.71$$

Dipendenza in media: esempio

☐ Le medie delle distribuzioni condizionate sono:

$$\mu_Y(x_1) = 105.33$$
 $\mu_Y(x_2) = 89.47$
 $\mu_Y(x_3) = 75.14$
 $\mu_Y(x_4) = 68.71$

☐ La media aritmetica della distribuzione marginale è

$$\mu_Y = \frac{1}{60}(58 \cdot 8 + 73 \cdot 19 + 88 \cdot 15 + 108 \cdot 18) = 85.25$$

	Valori centrali ♠						
		Punteg	gio Test(Y)				
Età (<i>X</i>)	51-65 58	66-80 73	81-95 88	96-120 108	Totale		
41-50	0	0	2	13	15		
51-60	0	5	7	5	17		
61-70	2	8	4	0	14		
71-80	6	6	2	0	14		
Totale	8	19	15	18	60		

Come si vede, le medie delle distribuzioni condizionate sono tra loro diverse. Il carattere "Punteggio Test" dipende in media dal carattere "Età".

La domanda è se la dipendenza in media è forte oppure no.

Relazione fra la media marginale e le medie condizionate

La media della distribuzione marginale di Y è la media ponderata delle s medie condizionate

$$\mu_{y} = \frac{1}{N} \sum_{i=1}^{s} \mu_{y}(x_{i}) n_{i0}$$

media marginale

$$\mu_y = \frac{1}{N} \sum_{i=1}^t \gamma_j n_{0j}$$

medie condizionate

$$\mu_{y}(x_{i}) = \frac{1}{n_{i0}} \sum_{j=1}^{t} y_{j} n_{ij}, i = 1,...,s$$

$$\begin{split} \mu_{y} &= \frac{1}{N} \sum_{i=1}^{s} \mu_{y}(x_{i}) \cdot n_{i0} = \frac{1}{N} \sum_{i=1}^{s} \left(\frac{1}{n_{i0}} \sum_{j=1}^{t} \gamma_{j} n_{ij} \right) n_{i0} = \\ &= \frac{1}{N} \sum_{i=1}^{s} \sum_{j=1}^{t} \gamma_{j} n_{ij} = \frac{1}{N} \sum_{j=1}^{t} \gamma_{j} \sum_{i=1}^{s} n_{ij} = \frac{1}{N} \sum_{j=1}^{t} \gamma_{j} n_{0j} \end{split}$$

Proprietà associativa della media aritmetica

Devianza spiegata o fra i gruppi: misura delle diversità fra le medie condizionate

La devianza delle medie condizionate, data da

$$D_{s} = \sum_{i=1}^{s} [\mu_{y}(x_{i}) - \mu_{y}]^{2} n_{i0}$$

è una misura della loro diversità.

Questa quantità è nota come devianza spiegata o come devianza fra i gruppi poiché misura la distanza fra le medie dei singoli gruppi e la media generale.

Dipendenza in media: esempio

$$D_{S} = \sum_{i=1}^{s} [\mu_{Y}(x_{i}) - \mu_{Y}]^{2} n_{i0},$$

Punteggio Test (Y)

Una misura della dipendenza

media è data <u>dal grado di diversità</u>	Età (<i>X</i>)	51-65	66-80	81-95	
<u>delle medie delle distribuzioni</u>		58	73	88	
condizionate, come risulta dal	41-50	0	0	2	
calcolo che segue	51-60	0	5	7	
	61-70	2	8	4	
7 (107 00 07 07) 2 17	71-80	6	6	2	
$D_S = (105.33 - 85.25)^2 \cdot 15$	Totale	8	19	15	

$$D_S = (103.33 - 63.23)^{-113}$$

$$+(89.47-85.25)^2\cdot 17+(75.14-85.25)^2\cdot 14+(68.71-85.25)^2\cdot 14=11611.25$$

Per poter stabilire se la dipendenza in media è più o meno forte, bisogna confrontare l'indice calcolato con il massimo che esso può raggiungere.

Si può dimostrare che il massimo di $D_{\rm S}$ è dato dalla devianza della distribuzione marginale

$$D_Y = (58 - 85.25)^2 \cdot 8 + (73 - 85.25)^2 \cdot 19 + (88 - 85.25)^2 \cdot 15 + (108 - 85.25)^2 \cdot 18 = (8221.25)$$

Totale

15

17

14

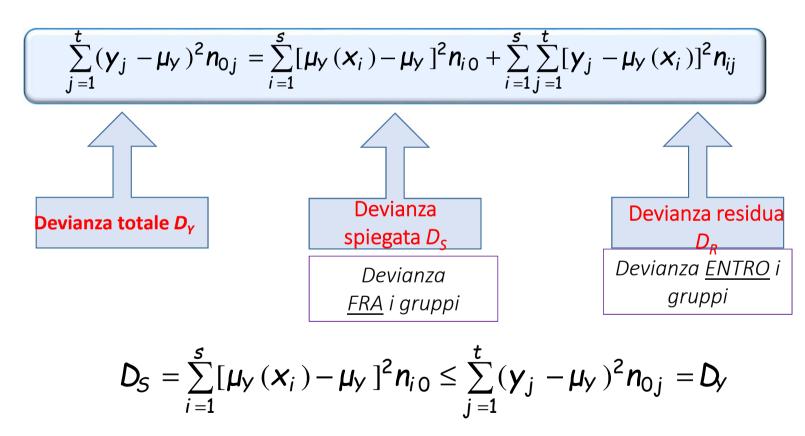
14

60

96-120

108

13


5

0

18

Relazione fra la devianza totale e la devianza spiegata

La <u>devianza della distribuzione marginale di Y</u> può essere scritta come <u>somma di due</u> componenti:

Rapporto di correlazione

Il rapporto tra la devianza spiegata e la devianza totale è chiamato rapporto di

correlazione:

$$\eta_{y}^{2} = \frac{\sum_{i=1}^{s} [\mu_{y}(x_{i}) - \mu_{y}]^{2} n_{i0}}{\sum_{j=1}^{t} (y_{j} - \mu_{y})^{2} n_{0j}} = \frac{D_{s}}{D_{y}}$$

L'indice può essere scritto anche nella forma

in quanto $D_s = D_v - D_R$.

$$\eta_{y}^{2} = 1 - \frac{\sum_{i=1}^{s} \sum_{j=1}^{t} [y_{j} - \mu_{y}(x_{i})]^{2} n_{ij}}{\sum_{j=1}^{t} (y_{j} - \mu_{y})^{2} n_{0j}} = 1 - \frac{D_{R}}{D_{y}}$$

L'indice è compreso nell'intervallo [0, 1].

$$\eta_{y}^{2} = \frac{D_{s}}{D_{y}} = 1 - \frac{D_{R}}{D_{y}} = \begin{cases} 0 & D_{s} = 0; D_{R} = D_{y} \\ 1 & D_{R} = 0; D_{s} = D_{y} \end{cases}$$
 indipendenza in media $m_{y}(x_{i}) = m_{y}$, $i = 1, ..., s$

Dipendenza in media

Come abbiamo visto:

$$D_S = 11611.25$$

$$D_{\rm y} = 18221.25$$

$$\eta_Y^2 = \frac{D_S}{D_Y} = \frac{11611.25}{18221.25} = 0.64$$

Età (<i>X</i>)	51-65 58	66-80 73	81-95 88	96-120 108	Totale
41-50	0	0	2	13	15
51-60	0	5	7	5	17
61-70	2	8	4	0	14
71-80	6	6	2	0	14
Totale	8	19	15	18	60